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part of the distribution is also unknown. This is an important generaliza- 
tion of the model. The purpose of the derived detection algroithms is two- 
fold: first, to assure constant probability of false alarm, regardless of 
the noise distribution (DF-CFAR); and second, to achieve optimal maximin 
probability of detection (P,) performance. 

Unavoidably, the performance analysis is asymptotic, but the main 
objective is in applications involving small sample sizes (n). Therefore, 
several different tests which are asymptotically equivalent are proposed, 
and then their small sample behavior is compared by means of Monte-Caflo 
simulations. In all the algorithms, the test statistic preserves the struc- 
ture of the quadrature matched filter, which is optimal for signal of un- 
known phase in Gaussian noise. However, in place of the linear sample mean, 
a minimax robust estimator of the random amplitude is substituted. To 
generate this estimate, scale invariant M- (maximum likelihood type), L- 
(linear combination of order statistics) or R- (rank) type statistics are 
utilized. 

The DF-CFAR property is obtained by using additional noise-reference 
observations, which are available in a matrix format. One of the columns 
consists of the samples taken from the spatial resolution cell which pre- 
sumably contains the target, and the others are taken from adjacent cells. 
Several canonical structures, denoted as sliding-window (SW), one-sample 
(IS), two-sample (2S), and single-sweep (SS) are studied (the last two are 
compatible only with R- type statistics). A new type of IS R- test is pro- 
posed, which does not use the signs of the observations and thus is CFAR 
even for noise with asymmetrical distributions. (This test requires 
bi-phase modulations of the transmitted pulse train.) The R- type tests are 
inherently DF-CFAR, even for finite n. The others achieve it only asymp- 
totically, but simulations have shown rapid convergence. 

In addition to differences in complexity and small sample size sensi- 
tivity, the tests vary in their performance in a non-homogeneous noise 
(clutter) environment. The IS is inherently immune to degradations caused 
by spatial non-stationarity, and the SW can be protected in a simple 
manner against the important types. On the other hand, only the new SS test 
for signal of unknown Doppler frequency preserves the complexity of the con- 
ventional periodogram test. In this test, each of the complex observations 
from the target's cell are ranked with respect to their simultaneous 
noise reference observations, and then an FFT is performed on the vector of 
robustly scored ranks. In all the other tests, the robust estimators/sta- 
tistics must be generated for each of the n unknown frequencies. The behav- 
ior of the tests in dependent noise situations is briefly discussed, and 
modifications are proposed. 

The problem of robust digital M-ary communication in white non-Gaussian 
noise is also studied. With some simplifying assumptions, it is possible to 
cast it into a framework similar to that of robust estimation of location 
parameters. The proposed receivers preserve the structure of the MAP deci- 
sion rule for Gaussian noise, but the M correlators are replaced by limiter- 
correlators or by generalized M-estimators. Expressions for the. error pro- 
bability are derived for both coherent and noncoherent receivers; they are 
shown to be identical with those for the AWGN channel, but the SNR is multi- 
plied by the same functional that characterizes' M-estimators. Monotonicity 
of the error probability with respect to this effective SNR ensures minimax 
performance. 
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ROBUST AND NONPARAMETRIC DETECTION 

OF FADING NARROWBAND SIGNALS 

Moshe Weiss 

ABSTRACT 

This thesis deals primarily with the design and analysis of algorithms for detection 

of narrow-band slowly fading signals, embedded in noise of uncertain distribution. The 

signal's phase and amplitude are random, but are essentially constant over the observa- 

tion interval; in addition, the Doppler frequency of the signal is unknown. This is the 

most common model of target echoes received by radar or sonar systems. 

Attention is focused on i.i.d. noise samples whose marginal distribution belongs to 

an e-mixture family, where the scale (variance) of the "nominal" part of the distribution 

is also unknown. This is an important generalization of the model. The purpose of the 

derived  detection  algorithms is twofold:  first,  to  assure  constant  probability of false 

alarm, regardless of the noise distribution (DF-CFAR); and second, to achieve optimal 
+■ 

maximin probability of detection [P^] performance. 

Unavoidably, the performance analysis is asymptotic, but the main objective is in 

applications involving small sample sizes (n). Therefore, several different tests which are 

asymptotically equivalent are proposed, and then their small sample behavior is com- 

pared by means of Monte-Carlo simulations. In all the algorithms, the test statistic 

preserves the structure of the quadrature matched filter, which is optimal for signal of 

unknown phase in Gaussian noise. However, in place of the linear sample mean, a 

minimax robust estimator of the random amplitude is substituted. To generate this esti- 

mate, scale invariant M- (maximum likelihood type), L- (linear combination of order 

statistics) or R- (rank) type statistics are utilized. 

The DF-CFAR property is obtained by using additional noise-reference observa- 

tions, which are available in a matrix format. One of the columns consists of the samples 



taken from the spatial resolution cell which presumably contains the target, and the oth- 

ers are taken from adjacent cells. Several canonical structures, denoted as sliding-window 

(SW), one-sample (IS), two-sample (2S) and single-sweep (SS) are studied (the last two 

are compatible only with R- type statistics). A new type of IS R- test is proposed, which 

does not use the signs of the observations and thus is CFAR even for noise with asym- 

metrical distributions. (This test requires bi-phase modulations of the transmitted pulse 

train). The R-type tests are inherently DF-CFAR, even for finite n . The others achieve 

it only asymptotically, but simulations have shown rapid convergence. 

Asymptotic maximin optimal P^ performance is shown for all test structures, with 

L- and R- statistics, and the simulations demonstrate almost identical performance of 

the SW- L- type test (with a- trimmed estimators) down to n =16. For the other types, 

robustness of the Pj against the distribution shape is maintained, but they are some- 

what less sensitive. The superiority of the proposed tests over the traditional robust 

tests, which have been based on a limiter-correlator, is also demonstrated. 

In addition to differences in complexity and small sample size sensitivity, the tests 

vary in their performance in a non-homogeneous noise (clutter) environment. The IS is 

inherently immune to degradations caused by spatial non-stationarity, and the SW can 

be protected in a simple manner against the important types. On the other hand, only 

the new SS test for signal of unknown Doppler frequency preserves the complexity of the 

conventional periodogram test. In this test, each of the complex observations from the 

target's cell are ranked with respect to their simultaneous noise reference observations, 

and then an FFT is performed on the vector of robustly scored ranks. In all the other 

tests, the robust estimators/statistics must be generated for each of the n unknown fre- 

quencies. The behavior of the tests in dependent noise situations is briefly discussed, and 

modifications are proposed. 

The problem of robust digital M-ary communication in white non-Gaussian noise is 

also studied. With some simplifying assumptions, it is possible to cast it into a frame- 



work similar to that of robust estimation of location parameters. The proposed receivers 

preserve the structure of the MAP decision rule for Gaussian noise, but the M correla- 

tors are replaced by limiter-correlators or by generalized M-estimators. Expressions for 

the error probability are derived for both coherent and noncoherent receivers; they are 

shown to be identical vi^ith those for the AWGN channel, but the SNR is multiplied by 

the same functional that characterizes M-estimators. Monotonicity of the error probabil- 

ity with respect to this effective SNR ensures minimax performance. 
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1.    INTRODUCTION 

1.1 Motivation and Outline 

i The classical theory of signal detection is based on a complete statistical characteri- 

zation of the signals and interference that are typical of the environment. In many cases, 

especially for the adverse situations in which radar and sonar systems operate, this pre- 

cise modeling is either complex or impossible. Consequently, there is a strong motivation 

to study the design of detection procedures which are insensitive or robust to deviations 

from the assumed statistical models. 

Following the fundamental work of Huber on robust estimation of location parame- 

ters [l] and on robust hypotheses testing [2], extensive applications and further research 

have appeared in the communication and information sciences literature, of which refer- 

ences [4]-[12] are a representative sample. Inspection of these references reveals that 

they are mostly concerned with lowpass deterministic (i.e., unknown but non-random) 

signals, except [9] which treats robust detection of weak stochastic signals, and [12] 

where results have recently been presented for deterministic narrow-hand signals. 

In this thesis, we address the design and analysis of robust detection algorithms 

which are appropriate for radar - sonar environments. By way of contrast to the deter- 

ministic signals that have been studied in the above mentioned references, we focus on 

coherent, slowly-fading narrow-band signals, which are typical of radar-sonar target 

echoes. Under this model, the signal's phase and amplitude are random, but are essen- 

tially constant over the observation period. Furthermore, the frequency Doppler shift of 

the received signal is unknown a priori, as it is proportional to the target's radial velo- 

city. While an extensive detection-estimation theory exists for this model when the noise 

is Gaussian, cf. [13-15], robust detectors have not been investigated. Although the algo- 

rithms developed in this thesis share similar techniques for robustification and analysis, 

the results of [4-12] are not directly applicable. Moreover, in previous studies it has been 

assumed that the "nominal" noise distribution is precisely known. In this thesis, on the 
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other hand, we allow uncertainty on its scale, i.e, the noise power. The scale is almost 

always unknown, as the dominant noise sources are clutter or reverberation echoes, 

which vary strongly with the environmental conditions. Consequently, one can argue 

that scale uncertainty is more fundamental than distribution shape uncertainty. 

Scale invariant detection has been studied before in the context of constant false 

alarm rate detection (CFAR); both adaptive and nonparametric techniques have been 

utilized [24,32]. However, the main objective was to assure the CFAR property and, usu- 

ally, simultaneous optimization of the probability of detection {Pj) had not been 

attempted. Apparently, scale invariant detection algorithms which are also insensitive to 

the distribution shape have not been studied before. (Some tests based on rank statistics 

are shown in this thesis to be quite robust, but this is a fortunate feature and is not 

guaranteed a priori). 

Another feature of our approach stems from the characteristics of radar - sonar sys- 

tems. The number of samples (n) is constrained by other system requirements (max- 

imum detection range, spatial resolution, allocated time frame for the detection sector), 

and typically is between 10 - 50 samples or less. Moreover, the desired levels of the false 

alarm probability [Pja] are very low; values of 10"^ to 10"^ are typical. Consequently, 

optimal algorithms that are the result of an unavoidable asymptotic analysis, serve as 

candidates for which comparative small-sample simulation studies are performed. While 

this approach is generally accepted in the statistical literature, only a few of the works 

[4-12] exhibit small sample performance. Moreover, the majority of the previously dev- 

ised robust tests are based on limiter -correlator structures, where the test statistic is 

derived from the sum of memoryless transformations on the input observations. For 

their asymptotic maximin robust optimality, the signal is assumed to be weak. As might 

be expected, simulation results in this work demonstrate that for small n and low Pf^, 

the limiter-correlator tests suffer considerable P^ losses; clearly, when the signal is 

sufficiently strong to be detected, it gets limited by the detector. 



In this thesis, we look at several different types of tests. Motivated by the good 

small-sample behavior of robust estimators of a location parameter [35], the proposed 

tests are based on a statistic which is, essentially, a robust and scale invariant estimator 

of the amplitude of the narrow-band signal. To generate this estimator, M-, L- or R- 

type statistics [3] are used. (Tests based on M-estimators were proposed by El-Sawy & 

VandeLinde [6], Rieder [73], and others for the simpler case of deterministic low-pass sig- 

nals). Although these different types can be made asymptotically equivalent at a fixed 

noise distribution by properly choosing their score function, the resulting tests differ in 

performance when the distribution is allowed to vary over a "neighborhood", and even 

more so, they differ in their small sample performance. Consequently, by looking at 

different structures it is possible to choose the more appropriate algorithm for a particu- 

lar application, in terms of both performance and complexity. 

Scale invariance of the amplitude estimator is not sufficient for CFAR operation, 

and several approaches are studied in this thesis for achieving it. We consider input 

observations that are available in a matrix format, where one of the columns (of length 

n) represents the samples taken from the spatial resolution cell which presumably con- 

tains the target. The other M columns, taken from adjacent range cells (in the radar or 

active sonar case), are considered as noise ref erence , i.e., they are assumed to be ident- 

ically distributed as the target cell is under the null hypothesis. It is possible to utilize 

the noise reference information in several canonical structures. 

In "Sliding Window" (SW) tests, the same statistic is generated for each of the 

columns; its sample-mean over the reference window (which is an estimator of the vari- 

ance of the robust amplitude estimator) serves as an adaptive threshold, against which 

the target cell statistic is compared. The whole structure is then slid over the entire 

range coordinate, and decisions are made for each of the cells. In this way, the imple- 

mentation complexity is basically that of computing the single column statistic. All the 

three types of statistics (M-, L-, R-) are compatible with a SW mechanization. 
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"Twosample" tests (2S) are studied in relation to tests based on the ranks of the 

observations (R-tests). In this class, the decision is based on the ranks of the target's cell 

observations with respect to the entire reference window observations. In "single-sample" 

(IS) tests, only the column of the test cell is utilized; these are useful when no reliable 

assumption concerning the spatial stationarity of the noise can be made. This class is 

also compatible with all three statistic types. Finally, "single-sweep" (SS) tests are R- 

type, where for each observation from the test cell, the rank with respect to the same 

row in the matrix is computed, and the final statistic is accumulated over the n rows. 

This is the only test that preserves the computational efficiency of the linear periodo- 

gram (FFT) detector, when implemented as a bank of n frequency contiguous tests over 

the Doppler uncertainty range. 

The tests based on R-statistics enable distribution free (DP) CFAR operation, even 

for finite n . For the other types DF-CFAR is achieved only asymptotically, but the 

simulations have shown rapid convergence. In all combinations of the statistic type and 

reference structure, it is possible to design for an exact or approximate maximin P^ per- 

formance: in some class of noise distributions the test is optimal, against a particular dis- 

tribution, within a specified class of tests; and its P^ is larger for any other distribution 

in the class. However, the actual P^ depends also on the noise-reference structure. Thus, 

for a particular application, and for different assumptions on the spatial stationarity, it 

is possible to trade-off complexity for performance by choosing the appropriate combina- 

tion of statistic type and reference structure. 

As a consequence of the asymptotic analysis and simulation study, our tentative 

conclusion is that the proposed robust detectors emerge as quite adequate for success- 

fully treating most of the important uncertainties that are encountered in the real-world 

radar-sonar detection environment. 
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Outline Of The Thesis 

Chapter 2 introduces the problem and presents a performance analysis of the com- 

mon (unrobustified) quadrature detector under situations of contamination. Since in 

most applications even if the noise distribution is known its variance is usually not, the 

adaptive threshold version of the detector is emphasized. Here, the test statistic is nor- 

malized by the Maximum-Likelihood (ML) estimate of the noise level. While this test 

achieves the desired CFAR property asymptotically, it is demonstrated that for small 

sample sizes Py^ can increase intolerably under contamination, even if the percentage of 

the contaminating component (e) of a mixture distribution [l] is rather small. Both 

analytical approximation of the distribution (by means of the first terms in a Laguerre 

type expansion) and simulation are utilized. In addition to Pj^ degradation, a large 

decrease in F^ is also possible. 

In Chapter 3 we study a very simple robust test on the "coherent envelope" of the 

observables, i.e., on the output of a quadrature matched filter which is the sufficient 

statistic under the purely Gaussian noise case. For this scalar statistic, extension of 

Huber's [2] maximin robust test is straightforward. It consists essentially in finding the 

threshold setting and a randomization constant under the least favorable condition. 

However, it is found that the proposed test can protect against contaminations that 

would have roughly doubled the Py^ of the unrobustified quadrature receiver. Beyond 

that, the maximin bound on P^ decreases rapidly as a function of e. Hence, this test is 

rather inappropriate for radar/sonar, where very low Pj^ is required, and e can be much 

larger than the desired Pf^. 

In the following chapters, the problem is solved in stages. We first treat the case 

where only the signal's phase is random; the full problem with all the previously men- 

tioned uncertainties is addressed in chapters 5 and 6. 

In Chapter 4 an asymptotically robust test, for detection of narrowband signals of 

known  frequency   and   additive  noise  of  uncertain  distribution  with  known  scale,  is 
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proposed and analyzed. The common large sample assumption is an unavoidable neces- 

sity in order to get explicit functionals for the error probabilities, on which optimization 

according to a maximin criterion becomes possible. However, we abandon the weak sig- 

nal assumption that has dominated the literature. By avoiding this assumption, we hope 

that the proposed test will be adequate for small sample sizes. The proposed test statis- 

tic is derived from a minimax robust ML estimation of the amplitude. This is achieved 

by applying Huber's [l] M-estimator of "location" to both the in-phase and quadrature 

samples, and then independence of the random phase is obtained by summing the 

squares of these estimates, exactly as in the quadrature matched filter. This test is 

shown to be maximin robust for sufficiently large values of the desired P^ (in the range 

of practical interest) and for several common models of the target's amplitude distribu- 

tion. Finally, the weak signal locally optimal robust detector for our problem is outlined, 

and is shown to be a local approximation to the M-estimation/detection structure 

derived here. 

In Chapter 5, further uncertainties that must be considered in practical applicar 

tions are studied. With regard to e in the mixture model, it is shown numerically that 

even a very pessimistic design with e=0.5 incurs a rather small additional loss compared 

to the case when e is known exactly. Thus, exact knowledge of e is unnecessary. More 

important, the robust M-detector is extended to handle an unknown scale (power level) 

of the nominal noise distribution in the mixture family, by coupling it with a robust esti- 

mator of the scale, from which an adaptive threshold is generated. While it is not possi- 

ble to exhibit maximin properties of the extended test in a IS class (i.e., when no refer- 

ence observations are available), it is shown numerically to be qualitatively robust in the 

sense that an upper bound on P^^ and a lower bound on P^ can be guaranteed within 

various parametrized mixture families. The latter bound is quite close to the P^ 

obtained by the optimal detector for the nominal Gaussian noise. 

When  noise reference is available,  a similar estimator-detector with an  adaptive 



threshold, which serves as an estimator of the variance of the amplitude estimator, is 

shown to be maximin in the class of SW detectors. Due to its CFAR property for any 

noise distribution, the restriction for sufficiently high P^ of Chapter 4 is relaxed. More- 

over, the maximin performance is valid for arbitrary distribution of the signal's ampli- 

tude, and when the reference window size M is also large, the test becomes globally 

maximin optimal (i.e., without restriction to the SW class). 

For the important case of nominal Gaussian noise, the M-estimators in either a SW 

or a IS test can be replaced by a- trimmed estimators, which are asymptotically 

equivalent in probability and simpler to compute. The same structure can be generalized 

for non-Gaussian nominal p.d.f. with the appropriate optimal robust L-estimators. 

Finally, the signal frequency which is also unknown in any realistic application (due to 

Doppler shifts), is treated by constructing a bank of contiguous robust tests which cov- 

ers the uncertainty range. It is shown that the detectability loss for signals whose fre- 

quencies straddle between adjacent such "filters", is asymptotically identical with that 

incurred by the usual periodogram (FFT) detector. 

The price that is paid for the improved capability with these new receiver struc- 

tures is a substantial increase in signal processing complexity, compared to the usual 

linear FFT test. However, the most demanding nonlinear processing task required here 

consists of several levels of data rankings, and this operation is becoming possible even 

for real-time radar applications with VLSI and VHSIC technology [16]. 

The final section of Chapter 5 presents a thorough Monte-Carlo study of the 

small-sample performance of the various robust detectors. The simulation results show 

that the performance predicted by the asymptotic analysis of the SW robust detectors is 

essentially maintained even for sample sizes as small as n^l6, in guaranteeing a high 

lower bound on the detection probability as well as in controlling the false alarm-level. 

For the IS tests, somewhat larger sample sizes are necessary for convergence to the 

asymptotic   prediction.    By   way   of   contrast,   the   corresponding   weak-signal   locally 
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optimal robust detector is shown to produce high losses for small desired Pf^ and large 

deviation of the signal frequency. These losses are attributed to poor convergence proper- 

ties to the Gaussian distribution as a result of hard limiting on the test statistic, espe- 

cially when the signal is sufficiently large to allow high detection probability. On the 

other hand, our proposed tests limit the influence of outliers around the arbitrary signal 

amplitude, and they converge rapidly to the asymptotic values. 

Chapter 6 treats detection of narrowband signals by rank based statistics. The 

motivation is twofold - first, to achieve DF-CFAR even with finite sample sizes; and 

second, to improve the efficiency of the SW and IS tests based on robust estimators. For 

a noise distribution which is known in shape, asymptotically optimal tests in all three 

generic classes (IS, 2S and SS) are found. Of prime importance is the new type in the IS 

class. It is shown that if the polarity of the transmitted signal is changed in half the 

samples, it is possible to obtain with a IS rank test optimal P^ performance, identical to 

that of the completely known distribution case, and without utilizing any reference sam- 

ples. Identical performance is possible with a SW test only for large M. Consequently, 

the IS R-test is inherently robust in a spatially non-stationary environment. 

In the SS class, a Doppler test that requires the least amount of computations is 

found. First, the target cell observations are ranked with respect to the same row, and 

then an FFT is performed on the complex vector of the scores of the ranks. Thus, the 

complexity is roughly O(nlogn), compared to n times more in Doppler tests with SW, 

IS or 2S structures. This test is attractive, therefore, in typical radar systems where 

even the FFT mechanization requires rates on the order of millions of operations per 

second. 

For all the rank based tests, robustification against the noise distribution uncer- 

tainty is achieved by designing the score function according to the least favorable noise 

distribution. We show, however, that the rank tests with the traditional Wilcoxon or 

Van Der Waerden score functions are inherently robust. Nevertheless, the robust score 
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function does not entail significant additional computation complexity, and should be 

preferred. 

The chapter ends with a Monte-Carlo study of the small sample behavior, followed 

by a comparison between the different robust tests of previous chapters. The issues of 

compatibility with a non-homogeneous environment, and with dependent noise situations 

are briefly discussed. It is not appropriate to declare one of the tests as the uniformly 

best, but it is possible to choose the one more suitable under specific environmental con- 

ditions, and for an accepted complexity in implementation. 

The problem of robust digital M-ary communication receivers is studied in Chapter 

7. With some simplifying assumptions, it is possible to cast the Bayesian multiple 

hypothesis decision problem in a framework similar to that of the binary Neyman- 

Pearson case. Robustification against non-Gaussian noise is achieved by replacing the 

linear correlators, in the bank of correlators receiver which is optimal for Gaussian noise, 

with limiter-correlators or with regression type M-estimators. Implicit expressions for the 

error probability with white, but non-Gaussian, noise are derived assuming discrete time 

processing. These expressions are identical in form with those for the AWGN channel, 

but the effective SNR is now multiplied by the same functional of the M-estimators 

(both coherent and noncoherent receivers are considered). Consequently, choosing 

Huber's function for the limiter nonlinearity again results in minimax performance. It is 

also demonstrated that the capacity of the assumed non-Gaussian channel can be much 

higher when compared to the AWGN channel of equal noise and signal powers. There- 

fore, efficient and robust communication is possible with either higher rates or reduced 

transmitted power. 
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1.2 Review of Huber's Results for Maximin Testing of Simple Hypotheses 

Huber [2] considered and solved the following problem. Let {a;,- j.'L^ be a sequence 

of independent random variables, and let {Po,Pi} be distinct probability measures on 

the real line with the corresponding densities {/o,/i} with respect to some measure. 

Assume that the likelihood ratio (LR) / ^{x)// J^x) = L{x) almost surely, where L(x) is 

a monotone function. 

Let M be the set of all probability measures on the real line and 0<€<1 a given 

number. The uncertainty in the distribution of the observations is introduced by 

expanding the simple hypothesis Pg ^"^^ simple alternative P^ into composite ones by 

a mixture model- 

HQ:      Po={QeM\Q={l-€)Po+eCo,    COGM} (1.1a) 

Hv      Pi = {QeM\Q={l-e)Py+eC^,    C ^eM} (Lib) 

Actually, Huber's setup is more general, it allows also the following neighborhoods 

of the nominal model: total variation, Prohorov distance, Kolmogorov distance and Levy 

distance. Moreover, different e,- are allowed in the Hi. 

The problem is to find the most robust test in the maximin sense between PQ and 

Pi, i.e., to find a saddle-point pair of test d*{x) €D, where D is the class of all decision 

rules, and distributions q',*6M such that 

sup   P{d,q{)    =    /3{d*,qt)    =      inf   0{d* ,q)   , (1.2) 
deu ?ePi 

subject to 

sup   a{d,q)    =     a{d*,qo)    =    a^ (1.3) 
a 6D 
?€Po 

Here, ^{d,q) is the power of the test (detection probability) at density q: 

I3{d,q)    =    Prob{d{x)=Hi\Hiis  true  (qePi)} (1.4) 

and a{d ,q) is the level (false alarm probability) 

a{d,q)    =    Prob{d{x)=Hi\Hois  true (gGPo)} (1.5) 
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The meaning of the criterion is clear- d* is the best Neyman-Pearson (NP) decision rule 

for the least-favorable pair {go i^D- 

As Huber showed, the most robust test is a NP test on the pair 

90 
(M/o(^) 

(M/l(^) 

L{x)<L" 
L{x)>L" 

L{x)>L' 
L{x)<L' 

(1.6) 

(1.7) 

The numbers L'    and L'' are determined such that q^   and ql  are legitimate density 

functions. 

For e sufficiently small (a condition which is equivalent to disjointness of PQ and 

PJ the normalizing equations have a unique solution with 0<L' <L''<oo. The LR 

between gg  ^^^ 91 is thus given by "soft-limiting" the nominal LR to- 

L' when     L{x) < L' 
l{x;L',L")= IL{X)      when     L'<L{x)<L" 

L" when     L{x)> L' ' 

n 

and a maximin robust test is a randomized NP test on T [x) = Yl ^{^i \L',L' '): 
1=1 

(1.8) 

{H, 

r(x) = 
for r(x) >t 

Hi with probability c for T {x) =t 

H, for       r(x)    <t 
(1.9) 

The quantities t and c are determined from the right side equality in Eq.(l.3). Note that 

in general the test must be randomized for arbitrary a^ since T [x) takes its values at 

the limiter end-points with finite probability. 

It is interesting to point to some peculiarity in the result. The least-favorable densi- 

ties are constrained by (1.6-1.7), and in particular the contamination Cj can not be 

related in any other way to CQ. While this is reasonable in a game situation against an 

intelligent opponent, it seems unlikely for signal detection problems where the uncer- 

tainty in P^ is induced by that in PQ and is not affected by the presence or absence of an 
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additive signal whose characteristics are assumed to be known. For example, in a "loca- 

tion shift" problem (//"o^^:,-=n,-, //"iij,-=n,+a) we would like Pj to be the class of all 

distributions that are shifted to the right by a from those in PQ, and specifically 

qi{x)^qo{x-a), which can not also satisfy (1.6-1.7). Thus, it is suggested that a 

better solution might exist for this physical formulation of the problem; unfortunately, it 

is unknown ^. The asymptotic reformulation in Chap. 4 essentially avoids this peculiar- 

ity. 

It should be emphasized that Huber's proof of optimum robustness relies heavily on 

two assumptions which are not valid for the problems that are considered in this work: 

a) HQ and H^ are simple hypotheses- PQ and P^ do not include any unknown (relevant 

or nuisance) parameters. b)the observations are independent r.v.'s. 

1.3 Review and Critique of Robust Tests Based on Weak Signal Assumption 

Often in detection problems, the true value of the signal amplitude A is small but 

otherwise unknown. In such cases it is plausible, mostly as a theoretical nicety which 

permits an analytical (and usually quite simple for implementation) solution, to employ 

the locally optimum detector (LOD) structure. This is the detector structure which 

maximizes the derivative of the power function (detection probability) at A=0, for a 

given test level (probability of false-alarm), [25]. Under suitable regularity conditions on 

the densities, the LOD is identical with the detector which is obtained by taking the 

leading term of a series expansion for the likelihood-ratio in powers of the SNR around 

zero [26]. It also maximizes Pitman's efficacy [27] which is a suitable weak signal measure 

of performance, when the number of the observed samples n —t-oo. 

The weak signal local optimality criterion was first extended to problems of robust 

detection by Martin and Schwartz [4], and has been widely applied since then, cf. [5],[7]- 

[10],[12]. Instead of seeking a maximin relation on the detection probability as in Eq. 

Private communication with P. J.Huber, 12/1983. 



- 13- 

(1.2), it was proposed in [4] to design for a maximin relation on the slope of the asymp- 

totic power function at A =0 : 

sup/3'{d,q^)   =   I3'id*,q;)   =    inf /3'{d*,qo) (1.10) 
deo ?oePo 

where   (^{d ,q) ^——/3{d ,q \A)\^^Q     and subject to the false-alarm constraint of Eq. 
CtJ\. 

(1.3). The interpretation is that d* is the LOD for the least-favorable density q^. This 

criterion has resulted in all the above mentioned references in a limiter-correlator 

structure: the locally optimal non-linearity of the LOD receiver is robustified against e - 

contamination by inserting a soft limiter at its output and then correlating the non- 

linearly transformed observations with the known signal sequence. This will be denoted 

in the following as LORD - LO Robust Detector.   . 

The performance of LOD schemes is commonly evaluated using asymptotic meas- 

ures such as the Asymptotic Relative Efficiency (ARE), which requires both the assump- 

tions of large n (to satisfy the central limit theorem) and vanishingly weak SNR. In any 

practical engineering application, the number of samples must be finite ^ and thus the 

input SNR must be reasonably large to obtain meaningful detection probability. It fol- 

lows that LOD schemes might perform poorly in practical applications. Several exam- 

ples of peculiar and very slow convergence of the finite sample RE to the ARE, can be 

found in [28]-[31]. These references include examples where the finite-sample/large-signal 

ranking of detector performance are actually different from ARE prediction. Another 

new example is given in Appendix A. The large SNR performance of the LOD would be 

extremely poor when the test non-linearity redescends or even vanishes except for some 

region around the origin, i.e.   /(2;)=0 Vl x | >c . In these cases we will obviously get 

' In radar-sonar systems, n is directly related to the total search time of the desired sector, to the 
desired maximum non-ambiguous detection range, and to the spatial resolution of targets. More- 
over, the detectability of coherent signals is (asymptotically) governed by the average integrated 
SNR =nA /2cr. Since transmitters are usually constrained by the average rather than peak 
power, it is only the product nA that matters and improved detectability can be obtained by in- 
creasing A as well as n. Hence, in view of the other system design goals that were mentioned in the 
beginning of this note, n is usually in the range 1-100, and even in 1-3 samples for very long range 
systems, in contrast with the common theoretical assumptions. 



- 14- 

lim   /3—>'0, in contrast to the desired consistency of the power function with increasing 

SNR. This situation was actually obtained in [10]. In principle, this undesired property 

of LOD designs might be corrected by switching between two detectors, where one of 

them is the LOD and the other one is some amplitude-consistent detector. The switching 

should occur as a result of a threshold crossing by an estimator of the signal amplitude 

A . This estimator must obviously be robust against deviations in the assumed noise 

model to prevent incorrect switching. While this heuristic proposal has not been 

analyzed , it does suggest that an optimal robust detector should be based on a robust 

amplitude estimator, as will be studied in Chap. 4. 

Inherently, the LORD scheme is subject to the same consistency problem. In addi- 

tion, investigation of the previously mentioned references reveals that they all exhibit 

one or more of the following peculiarities and shortcomings: 

i) The support of the contaminating density c in Eq. (1.1) is restricted to lie 

exclusively on the exterior of some interval [-2:i,xi] , cf. [9]. This might not be a 

severe limitation since the greatest deterioration in performance of the conventional 

detectors occurs for contaminations that are in the far tails of the nominal density. 

ii) The nominal density itself is not a member of the mixture family P o in which a 

least-favorable density is sought, but rather "close" to it in some measure, cf. [9], 

[12]. 

iii) The test is maximin robust only for a>a(e), which is roughly in the range 0.05-0.2, 

cf. [4],[5], and [7]. Hence, no robustness is guaranteed for the most important range 

of small a: 10"^- 10"^ 

It is clear that the maximin relation (1.10) is neither sufficient nor necessary for 

obtaining the desired maximin solution in terms of the detection probability itself. Since 

Eqs. (1.2) and (1.3) are contradictory in nature when A can take any value in some inter- 

val, the most that can be expected from the LORD approach is as shown in Fig. 1.1:   the 
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shaded region on the /3 axis indicates the a's obtained for the optimal detector for any 

density go in t^e mixture family; the slope of any /9(go) at A=0 agrees with (1.10) and 

(1.2) is satisfied for all signal amplitudes that are greater than some critical value : 

■^ ^-^c or equivalently P>Pc ■ 

However, the power function of a LORD could as well behave as shown in Fig. 1.2 

where (1.3) and (1.10) are satisfied, but the curve of ,9(^0 ) dominates that of /?(go) V 

A >0 and V^Q ^PQ- (Other situations are also possible). Nevertheless, if V^o^ PQ the 

distance   between   the   curves   in   Fig.   1.2   could   be   made   sufficiently   small,   i.e.- 

I/9((f *,go)-/5(«'*,?o) I ^^fJQ'OJ-^ )'~*'0, the detector would be practically robust, though 

not in the most general maximin sense. (In that case, qQ actually becomes the most- 

favorable density for the detection probability !) 

Closer study of the structure of all the LORD tests in the above mentioned refer- 

ences reveal that implicit in all of them is a "robust estimator of zero amplitude" -i.e., 

the test is actually based on an approximation of the leading term in the expansion of an 

appropriate version of Huber's robust estimator in a power series around zero amplitude. 

This observation establishes another motivation for the asymptotically robust test of 

Chap. 4 which utilizes robust estimation of the amplitude without any small signal 

approximation, and thus essentially avoids all of the above mentioned problems. 
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a(d*.(f) 
a(d».q) 

Fig. 1.1 Qualitative power function curves for .a desired maximin robust detector 
of signal with unknown amplitude. 

a(d*,q*)r 

a(d*,q) 

/9(d*,q*) 

Fig. 1.2 Qualitative power function curves for a locally-optimal robust detector 
which is not maximin with respect to the detection probability. 
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2.    THE    NARROW-BAND    SIGNAL   AND    NOISE   DETECTION 

ENVIRONMENT 

2.1 Models and Problem Statement 

The problem to be considered is that of robust detection of a slowly fading 

narrow-band signal with unknown phase and ampUtude in nearly Gaussian narrow-band 

noise. This signal model is typical of most coherent radar targets [13] and also appears in 

some sonar problems and also in communication over tropospheric links [14]. 

Specifically, the discrete signal plus noise samples that are observed at the systems 

input terminals are 

Zi = Asicos{ojti +(/)) + n,- ,i = l,...,n (2.1) 

The rij  are narrow-band noise samples around the known^ center frequency a; : 

n,- = n^ cosojt - Ug sinut (2-2) 

{n^ing} are assumed to be zero mean, independent ^ and identically distributed (i.i.d) 

random variables (r.v.), from a nominally Gaussian e -contaminated mixture : 

/(nc,nj= n/o("c.)/o("..) (2.3) 
i=l 

where 

1 -x^ 
f o("c. = x)= f o(^., = x) = (1-e) exp(-—-) + ec{x)       , c GM    (2.3a) 

4> is the unknown signal phase which is common for all samples (coherent detection) 

and uniformly distributed over [0,27r]. It does not convey any information on the target 

and is thus a nuisance parameter which has to be averaged out. {s,- },"=i is a sequence of 

known, positive, amplitude modulations    with (1/n )^s,-^=l.   The amplitude A which 

The case of unknown Doppler shift will be treated later by the usual "bank of filters" 
approach. 

Notice that sample -to -sample independence either excludes the common situation of 
detection in correlated clutter, or it corresponds to a sub-optimal scheme where the ob- 
servables 2,- are obtained by pre- whitening the input sequence. 

Known phase modulations can be introduced without much complication. 
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is also constant for all the observed samples will be considered in the sequel as either 

deterministic but unknown or random with some known distribution of unknown scale^. 

It is well known, cf. [13], that in the purely Gaussian noise case (e = 0), a uni- 

formly most powerful (UMP) test, independent of the amplitude being deterministic or 

random with an arbitrary distribution, is equivalent to a threshold test on the "coherent 

sample envelope" R (x,y) : 

i?(x,y)==(f]:r,.5..)2 + (E2/,5..)' (2.4) 

where the in-phase and quadrature samples are obtained by applying the input to a pair 

of ideal lowpass mixers: 

Xi = 2ziCosut I ipf = Asi cos(f> + n^ (2.5) 

?/,• = 2ziSmojt I j^pp = AsiSm<f) + n^^ (2.6) 

Since the quadrature components are obtained by a reversible operation, they are 

equivalent statistics for the problem, which can thus be reformulated as: 

Ho- 

Hi. 

f2.7a) 

Xi = n^  + AsiCoscf) 

y. = n^^ + Asi sin(?S (2-'^^) 

It is desired to obtain a maximin relation like Eq. (1.2) for all A ^A^ (recall the discus- 

sion in Section 1.3) subject to the false-alarm constraint Eq. (1.3). 

Direct application of Huber's [l] solution for this problem is inappropriate since the 

samples under iJj are actually dependent due to the common random phase (p, even 

when A is deterministic and known. However, a "naive" extension of Huber's test is pos- 

These slow fading assumptions correspond to common radar targets whose cross section 
(RCS) fluctuates with a correlation time much longer than the "blip" duration nT, T= 
intersample period, but much shorter than the scan-to- scan period. This is a most fre- 
quent situation [13]. 
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sible if one considers </> as a non-random but unlcnown and adopts an "estimation- 

detection" procedure. A set of M-+00 tests is performed, where the ;'- test is matched 

to (?!>y=j/27rM and its objective is a decision about the presence of a signal 

of phase (pj. Each of the individual tests is then of the correlator -limiter type found 

in [4], but the limiter break-points are now functions of the 5,- and also of cpj. Since 

phase information is irrelevant, the final decision can be reached by accepting H-^ if at 

least one of the individual tests has accepted it. 

We have not studied how many parallel tests have to be performed to achieve 

acceptable performance with arbitrary signal phases between the adjacent "filters". It is 

conjectured that it might be prohibitive, especially when the Doppler shift is also unk- 

nown so that a two-dimensional "filter-bank" (phase, frequency) has to be constructed. 

In the absence of any optimal procedure of design for the finite sample problem, we 

suggest to weaken somewhat the requirements. We will do that in Chap. 3 by assuming 

that the observable is only the envelope statistic of Eq. (2.4) rather than the original 

quadrature samples. We can then construct a most robust test against the uncertainty 

in the distribution of that scalar statistic. 

In Chap. 4, we will extend the asymptotic estimation-detection approach of El- 

Sawy and VandeLinde [6] to our problem, utilizing some of Huber's [l] results on robust 

estimation of a location parameter. It is shown that if A is replaced by a robust 

minimax estimate, the resulting test statistic has a limited robust property. 

2.2 Performance Degradation of the Conventional Envelope Detector. 

In this section, the degradation in performance of the envelope detector of Eq. 

(2.4), (which is the UMP detector for slow fading narrow-band signals in narrow-band 

Gaussian noise) will be analyzed when it operates in a background which comes from a 

Huber-Tukey mixture family. The decrease in detection probability as well as the 

increase  in  false  alarm probability  are of interest, where  the  latter is of an extreme 
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importance in an automated search system. These results will serve as a basis for com- 

parison with the performance of the robust detectors that are developed later in this 

work. 

Radar and sonar systems usually operate in a highly non-stationary and non- 

homogeneous noise background. Except for the receiver thermal noise which is station- 

ary and Gaussian, the statistical properties of interference that is the outcome of exter- 

nal sources, (such as clutter reflections from ground sea or aerial objects in the radar 

environment, or ambient noise and reverberations in the sonar case [14], [22]), rapidly 

change in time and space. Therefore, even when the Gaussian assumption is adequate, 

the fixed threshold detector based on the envelope statistics of Eq. (2.4) is of little value, 

since its actual false-alarm rate will fluctuate intolerably according to the changes in the 

background noise level. A common adaptive detector for these situations, which is 

invariant to the power level of the background noise, compares the envelope statistics 

from the "test-cell" with an adaptive threshold derived from a "noise-reference" chan- 

nel. Specifically, {x,y} represent the narrow-band observation samples in the 

hypothesis-testing cell, {u,v} are the noise-reference samples which are assumed to have 

the same distribution as that of { x,y } under HQ.   The adaptive test is: 

c/(x,y,u.v)=^l iff i?(x,y)>«iy(u,v) (2.8) 

where 

r2, ^2.        ./..^       1   A ..    .        ^ .__^       1 A R=P+Q'-   /(x)=^x]^i;    §(y)=-E2/i (2.9) 

W^Kv)=-Lx](t//+r/) (2.10) 

f^;=^E«i;     ;^y=|E-o- (2.11) 

The threshold multiplier t is determined  as to achieve  the  desired false -alarm rate. 

(Notice that there are M reference vectors for the test vector, all of dimension n). 

In search systems where a target presence is to be detected in some spatial sector, 

the noise reference samples are easily obtainable by applying the same signal processing 
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of the hypothesis testing channel to adjacent resolution cells in range, Doppler or bearing 

coordinates, c.f. [18]-[20]. This detector is known as the Cell- Averaging CFAR(CA- 

CFAR), Mean Level Detector(MLD), or Sliding Window Detector (SW). When the 

number M of reference samples grow asymptotically, its performance approaches that of 

the UMP detector for the fixed-variance Gaussian noise. Its structure is also almost 

identical with that of a narrow-band version which can be derived from the Two-sample 

Student's-t test [21], which has some optimum properties among unbiased and invariant 

tests for detection in Gaussian noise of unknown level. (In the extended t-test, the noise 

variance is estimated from both the test and reference samples in contrast to (2.8). 

However, the difference in performance is quite small when M is sufficiently large, and 

the structure of Eq. (2.8) enables SW mechanization where R as well as Uj'+Vj" are 

generated sequentially by the same hardware during the search). 

In the following we assume that the background interference has an epsilon- 

contamination mixture density, where the nominal as well as the contaminating densities 

in Eq.(2.3) are Gaussian: / =(l-e)A''(0,l)4-eA^(0,c"). The performance of the detector is 

discussed first when the number of samples n is asymptotically large, and secondly for 

the finite sample case. 

a) n —+00 

When n is asymptotically large, all the quantities I, Q, Uj, and Vj of Eqs,(2.9)- 

(2.11) are Gaussian random variables. Hence, it is obvious that this detector is asymptot- 

ically nonparametric under the null hypothesis; i.e., it is CFAR for any probability den- 

sity of the input test and reference samples for which the central limit theorem holds. 

Under the alternative, for a Rayleigh distributed slow-fading signal the detection- 

probability of this detector is uniquely determined by the integrated Signal-to-Noise 

ratio (c.f. [18], [20]): SNR =nA'^/2a^. Since a^=[l-e)+ec^ , it is clear that even a small 

amount of high power(c'') contamination can reduce the effective SNR by orders of mag- 

nitude, thus spoiling detectability completely. 
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b) Finite n : 

With regard to the detection probability a similar behavior as above is to be 

expected, as it is not significantly affected by the tails of the distribution. However, it is 

no longer true that the detector remains CFAR for moderate and small sample sizes. 

Since in practice radar-sonar systems are designed for very low false alarm probabilities, 

it is the tails of the distribution of the test statistics that counts, and even a slight devi- 

ation from Gaussianity of the input samples will suffice to substantially increase the area 

under the tails. 

In Appendix B, an approximation is derived for the distribution of the coherent 

envelope R, which approaches the desired one-sided exponential distribution for large 

n. The approximation is based on an expansion of the distribution in a series of ortho- 

normal Laguerre polynomials, where its leading term is (with proper normalization such 

that E(R)=1) the Gamma density 

/(^H       r(af '    ^^° (2.12) 

where a==(l+Ar/2n )"^ and k  is the kurtosis of the input samples.   This is given for a 

Gauss-Gauss mixture by 

*=^-3-3.a-        "       " c'-l 
E-'{.'') ■    . . P-13) 

Notice that when e -> 0 but ec^ » 1, A; -^ 3/e » 1. Table 2.1 demonstrates 

that k can be very far away from zero for a Gauss-Gauss mixture, thus a is also much 

smaller than 1 leading to higher false-alarm probability. 

Actually, an exact analytic expression was derived for the special case of a Gauss- 
Gauss mixture, but it was found to be very difficult to compute numerically. 
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>-<v,C 3.162 10 31.62 
0.001 
0.01 
0.1 

.238/.992 
2.02/.941 
6.06/.841 

24.3/.568 
73.5/.303 
22.3/.589 

748.5/.041 
245.4/.115 
26.47/.547 

Table 2.1 Kurtosis (left entry) and a (right), Gauss-Gauss mixture, n=16. 

Figures 2.1 thru 2.5 depicts the false alarm probability vs. the threshold multiplier 

t, where t is set according to the Gaussian assumption. In each figure, the graphs 

marked "known sigma" corresponds to the adaptive threshold detector of Eq.(2.8) with 

M -+oo; in that case the variance estimation is error-free and the detector is identical in 

performance to the UMP detector for the known variance case. The graphs marked " 

€=0" give Pj^ when the input is indeed Gaussian. In all figures, n=16 and M=8. This 

is sufficiently small for poor convergence to Gaussianity of the sample means in the tails, 

but is representative of the number of samples actually employed in most systems. The 

adaptive-threshold curve with e=0 was computed from P f ^^l+t /M)~^, c.f. [18], [20]. 

The Laguerre approximation was computed only for the M —»-co case, since for the adap- 

tive threshold test no similar approximation is possible. ^ The squares were obtained 

from a Monte-Carlo simulation; it is observed from the figures that the Laguerre approx- 

imation is quite reasonable and agrees closely with the simulation results in its region of 

low variance (roughly down to the reciprocal of the number of runs in the simulation). 

The main conclusion from the figures is that the increase in Pj^ is very high, for desired 

values of 10"^ and lower whenever a<0.9, and that this deterioration is ordered in 

correspondence with the deviation of k and a from their values at the Gaussian density. 

This increase in Pf^ is much more severe for the adaptive-threshold detector with finite 

number of reference cells; in Fig. 2.5, for example, the threshold setting for 10"^ at the 

Gaussian produces about 3-10"^ at the contaminated mixture. 

" Since it is not possible to obtain analytic expressions for the moments of the ratio R/W 
of Eq. (2.8). While it is possible to derive a similar approximation to the distribution of 
W and then to integrate numerically Pr{R>tW}, this approach was not taken. 
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3.  ROBUST TEST ON THE SAMPLE EINTVELOPE 

When non-contaminated hypotheses contain nuisance (vector) parameters 0; with 

known distribution they are actually simple hypotheses, and the optimal test is a 

Neyman-Pearson test on the likelihood ratio of the averaged densities: 

L (x) = E,^[f i(x I e,)]/E,^[f o(x I ^o)] (3.1) 

An attempt to incorporate averaging into the proof of optimality of Huber's test fails 

due to the fact that the marginal density is in general not a product of densities of the 

n 

components  i,-:    Eg[f (x | 9)] ^   U   E^[f (x,- | d)\,   unless  n = 1.    When   n = 1,   the 

structure of Huber's test extends to the case where there are nuisance parameters; the 

only correction needed is to replace L (i) of Section 1.2 by L {x ) = E^[f ^{x \ 9)]/f Q{X ), 

provided it is a monotone function of 2;. 

Therefore, in the absence of an optimal procedure for the design of a robust test on 

the original observables {a;,-, y,-},=i of Eq. (2.7), it is proposed to weaken the require- 

ments and to consider instead a most robust test on some scalar statistic. Since for 

€ = 0 the sample envelope R (x, y) = (^ x^f + (X) Vi)^ is a sufficient statistic for the 

problem, and its distribution is independent of the phase, it is natural to try to robustify 

a test based on R . 

Thus we will consider the modified problem: • : 

Po={g{R]eM\q{R) = {l-e') fo{R) + e'coiR),   CQEM} 

Pi = {']{R)eM\q{R) = {l-e'] f,{R) + e'c,{Rl   c , e M} 

where e' is the amount of contamination on the envelope R. ^^^ 

*'' If one knows how to find e, of the original observables (by physical reasoning, estima- 
tion or guessing), he should be able to apply his procedure for finding e' . Nevertheless, it 
can be verified that if the uncertainty in the measure is given by a mixture model, non- 
linear operations on random variables do not change e and summation of n i.i.d. contam- 
inated r.v's results in e„ = 1 - (1 - e,)" , from which we get e'   =   l-(l-e, f" « 2n e,. 
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We now apply this approach to Gaussian contaminated quadrature noise com- 

ponents and Rayleigh distributed signal amplitudeJ^^ It is well known [13] that the nom- 

inal densities are given by: 

/ i(/? \A )=(7/ exp[-a/(i2 +n ^A ^)]IQ{A ^ /a'')   ,   R >0 (3.2) 

/ ,{R )=EA [f ,{R I A )]=[ai{l+S„ )r'exp[-R /ai{l+S„ )]   ,  R >0 (3.3) 

where a^=Ef J^n,^)=Ef J^n,'^), a^=2n a^,S =Ai /2(j^ is the input signal to noise ratio 

under the nominal conditions, A ^ =E [A ^) and S„ =nS. 

The least favorable pair is given by Eqs.(l.6-1.7), with / ^{R) from (3.3) and / Q{R ) 

by the same expression with S„ = 0, and 

L{R)={l+S,)-Wp{KR)  ,  R>0,    K^SJa^{l+S,) (3.4) 

As L [R] is monotone, an equivalent test statistic is 

T{R)={ 

air'       , R   < ^Rr' 

R ,     alr<    <R   <alr" (3.5) 

i   ^J '■"       ' R   > a^r" 

where the limiter breakpoints are found by solving the normalization equations (C.2-C.3) 

of Appendix C.   These equations yield 

exp[-r '(l+5„ )i+(l+5„ )-iexp[r '5„ (l+5„ )-i][l-exp(-r ')]={l-e')-' (3.6) 

l_exp(-r ")+il+S„ )exp[-r "  S„ (l+5„ )-']exp[-r "(l+5„ y']={l-e')-' (3.7) 

It is shown in Appendix C that the resulting maximin test can take three different 

forms, depending on e and the desired a^. Roughly, when e/aQ is large, it is a random- 

ized test where H^ is decided with probability c <1 if R>t. For intermediate values of 

e/oQ, it is a deterministic threshold test on R , and for small values, HQ is decided with 

probability c, if i? <f.   Equation (3.7) is explicitly solved by 

(2) This corresponds to a Swerling I target model [17], which is a very good description of 
the radar cross section (RCS) fluctuations for microwave frequencies, where the target size 
is much larger than the wavelength so that the quadrature components are due to sum- 
mation of many independent reflectors and the central Umit theorem holds - fl3l. 
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/'   =\n{S,{l-e')/e' ] (3.8) 

while solutions for the  first one  can  be found  numerically from  the set of solutions 

{a   < 1} of 

S„a+a-^^={l+S„){l-e')-'   ,   a ==exp[-/(l+S-^ )-i] (3.9) 

Table 3.1 shows the values of the "sufficiently small" e^' for which Pg and P^ are dis- 

joint and the maximin test exists [V {(.')<L' '[t'), \fe' <e^' ). These are given as a 

function of the integrated signal to noise ratio S„ , the natural measure of distance 

between the hypotheses for this problem. 

Sr, 10-2 10-1 1 10 10^ 10^ oo 

^r' 3.5 • 10"^ 4 • 10-2 2 .42 .49 .498 .5 

Table 3.1 Values of critical contamination e^.'   vs. integrated nominal 
signal-to-noise ratio 5„ = nE{A'^)/2a'^. 

A suitable measure of performance of a robust test is how far is the lower bound on 

the power l3{d*, q*), from the power of the Neyman-Pearson test for €= 0 , JSQ.   For 

our problem jS^ = ofQ     "^      , and using (3.7) with (C.ll) and (C.15) of Appendix C, 

I3{d*,q*) = sj{i + s„) 
ao 

l + 5„ 
l-€' 

e'    < 

e' > 

Sn "O 

l + 5'„ 

Sn<^Q 
(3.10) 

l + 5„ 

The different expressions correspond to cases b) and c) in the appendix. The last one is 

valid for those desired values of a^ when the limiter is "effective" and one must resort to 

a randomized test, which in turn causes faster decrease of the power curve. Case a) of 

the appendix is never applied in this Rayleigh signal example, as it was found numeri- 

cally that it corresponds to false-alarm probabilities higher than 0.5. 

Figures 3.1 - 3.2 depict /3{d* ,q*) versus e' for different values of e' and S„ .   All the 

graphs are clearly characterized by a sharp "knee" at e':=^aQS„ /{l+S^) f^ OQ, such that 
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when e' is larger than this critical value the power of the test deteriorates rapidly. 

Notice that even an increase of orders of magnitude in the effective signal to noise ratio 

S„ does not help to alleviate the problem. The figures also show the false alarm proba- 

bility of the optimal detector for the uncontaminated case , when it actually operates in 

a worst-case contamination under HQ: a{N.P. ,w.c. )=ao(l-£')+e'. (Under H^ the worst 

case power is (l-€')/?o which is insignificantly lower than /3Q for the small e's considered). 

Thus we conclude that the proposed test can protect against contaminations which 

would have roughly doubled the false alarm probability of the Neyman-Pearson test 

(€'^2ao). Beyond that, this protection is achieved at an intolerable price of decrease of 

the power. In radar applications, Q-Q is very small and its variation is significant only for 

an order of magnitude changes. Thus the test proposed in this section is not very useful 

in many practical situations. 

A somewhat similar robust detector for a Rayleigh signal in nearly Gaussian noise 

was recently studied by Shin and Kassam [11]. Motivated by insight gained from the 

structure of various robust detectors, they suggested inserting a limiter-squarer non- 

linearity at the outputs of the in-phase /=2a:,- and quadrature Q ^=Y^y^ channels, 

summing the outputs and comparing to a threshold. The amount of limiting was optim- 

ized numerically and the performance was analyzed. Comparing Fig. 6 of [ll] with Figs. 

(3.1)-(3.2) here, it is observed that the scheme of [11] is somewhat better. However, the 

numerical analysis of [11] was carried out only for the range e < a^, and it is not known 

whether the performance degrades further when e is orders of magnitude higher than 

ao^' At the least, this comparison demonstrates that it is advisable to "push back the 

limiting" (or more precisely, an adequate censoring of the outliers as will be clear from 

Chapter 4) as far as possible from the threshold comparison point to the original observ- 

ables. 

1^ Private communication with the authors. 
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Figure 3.1 a) False alarm probability that would have resulted when worst-case con- 
tamination is applied to the UMP test for purely Gaussian noise, vs. el b) Maximin 
bound on the detection probability vs. e^.   a^ = 10^ 
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Figure 3.2 a) False alarm probability that would have resulted when worst-case con- 
tamination is applied to the UMP test for purely Gaussian noise, vs. el b) Maximin 
bound on the detection probability vs. e'.   a^ = 10"^ 
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4. ASYMPTOTICALLY ROBUST TEST FOR KNOWN NOMINAL SCALE 

4.1 Introduction 

In this chapter a test will be derived which is asymptotically (n —>■ oo) most robust 

in a maximin sense. The scale of the nominal distribution is assumed known and refer- 

ence samples are not utilized. In the following chapter, we will show by means of simula- 

tion that this test maintains its performance even for small sample sizes. 

Utilizing some of Huber's [l] results on robust estimation of a location parameter, 

El-Sawy and VandeLinde [6], Rieder [73], Kassam et al. [10] and others derived asymp- 

totically robust tests for the problem of detecting a completely known signal in additive 

noise of uncertain distribution. A similar approach is possible (and turns out to be 

optimal) for the problem formulated in Section 2.1. We observe the similarity between 

the narrowband slowly fading coherent signal and the lowpass deterministic signal: for a 

given received sample {x, y}, A cos(f) and A s'mcf) are essentially unknown location 

parameters for the quadrature signal components. Moreover, in purely Gaussian noise 

the unknown phase (which is a nuisance parameter) is "averaged out" in the UMP test 

statistic R = I + Q , where / and Q are the sample-means of the in-phase and qua- 

drature components of the narrowband observations. / and Q are the Maximum- 

Likelihood estimates of the component locations and thus i? is a good estimate of the 

amplitude (squared) which is the "true" parameter of the problem, i.e., the one that dis- 

tinguishes between HQ and Hi. 

Building further on insight gained from the UMP statistic R , we observe that in 

the purely Gaussian case the detection probability ^^E^E^Prob {R >t \ A ,(f)} is 

analytically tractable as a result of the unbiasedness and Gaussianity of / and Q under 

both hypotheses. Since in order to exhibit a maximin property for a composite testing 

problem, it is necessary to obtain analytical expressions for the error probabilities func- 

tionals, it appears natural to preserve the structure of the R   test, but to replace the 
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sample-mean estimates with robust estimates of the locations {A cos^, A sin(?i}, which 

will have the following properties.   The estimates should be: 

i)    Shift invariant (or unbiased) for all   n . ' 

ii)  Efficient and consistent. 

iii) Conditioned on A  and (j), asymptotically Gaussian. 

iv)   Possess the minimax property on the estimation variance (which is translated 

into the effective SNR when iii is valid). 

v)    Maintain the above properties for medium and even small n . 

Huber's M-estimator [1], and the a-trimmed mean estimator (when the nominal 

p.d.f. is Gaussian) have all these properties. This facilitates the proof of maximin 

optimality of the proposed test when the amplitude is non-random. For random ampli- 

tudes which are of more interest in practical applications, the expectation of the detec- 

tion probability over the amplitude must be taken. It turns out that for the most fre- 

quently used target model in radar applications (Rayleigh amplitude or Swerling case I), 

the maximin property of the proposed test is only "almost" preserved (recall Fig. 1.2), 

but it is maintained exactly for a higher order chi-squared amplitude model. (Rayleigh is 

first order while constant amplitude is the limit of the chi-square family when the 

number of degrees of freedom tends to infinity). 

For the sake of continuity and convenience in the exposition, we will begin with the 

non-random amplitude case, and then move to the more realistic random amplitude 

models. Throughout this chapter the amount of contamination e in the Huber-Tukey 

model, as well as the variance of the nominal p.d.f., are assumed to be known. These 

strong assumptions which are inherent in previous work on robust detection [4]-[l2], but 

are rarely satisfied in practice, will be relaxed in Chapter 5. 
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4.2 Non-random Signal Amplitude ■ 

Before presenting the test, we need some definitions.   Define a class of functions ^ 

on i? ^ such that c/L (a; )/(ix =/(a;) e * if: 

1) L  is convex, symmetric about the origin and increasing for positive argument. 

2) / is continuous. 

3) for all g e Po,    0 < E^ [l'\x)] < oo " -     (4-1) 

de 4)      for all q 6 PQ,    -^ E^ [l[x - d)] exists and is nonzero at ^ == 0. 

Define the estimates by the following implicit equations 

A^[l)=Arg{Y,Sil{xi-SiA,)=0}   ,   iy(/)=Arg { f] 5,-/ (y^.-s.-i J=0}       (4.2) 
»=1 i=l 

(Ax and A^ are the robust M-type estimates [l] for the location parameters A cos4> and 

A sm(t) of the observables in Eq.(2.7b), for a given realization of the random variables A 

and (j).) Define: 

Tn{lo)-[AAlo)?+\Ay{l,)?   .        ,     ' (4.3) 

where 

to{x) = -d[\osqo{x)]/dx (4.4) 

and go  € PQ minimizes Fisher's information: 

nio) < n<l) = J i^^og q{x)]' q{x)dx,  VgGPo (4.5) 

Consider a threshold test on T„{IQ) 

(   H,    ,       T„{lo)> t„{lo)-t{lo)/n 

C(x, y)=\   Ho    , otherwise . (4-6) 

and let T„{1) be any other test based on A,^[l) and Ay{l) with / 6^ but 

L y^-log qg. The following proposition states the asymptotic maximin properties of 

the test d*, which we will subsequently refer to as the SSQME (Sum of SQuared M-type 

Estimates) test. 



- 36 - 

Proposition 4.1 Consider the detection problem defined on the observables of Eq. (2.7) 

with the uncertainty in the independent quadrature noise samples obeying an e- mixture 

model PQ with symmetrical p.d.f. When A is nonrandom and 4> is uniformly distributed 

on [0, 2ir], among the class of all tests T„{1) based on A^{1) and Ay{l) of Eq. (4.2) with 

/ e*, there exists a least-favorable p.d.f. ^o ^ PQ and a constant 0 < (3^ < 1 such 

that the SSQME test defined in (4.6) with TJ  —»■ co achieves: 

suD /?(/, q^) = /?(/o, 70 ) =    inf   /?(/o, q) (4.7) 
'e* ? e Po 

whenever /3(/o, ?o ) ^ /^c  ^^'^ subject to 

sup   a{l, q) = a{lQ, q^) = a^ (4.8) 

g 6 Po 

Moreover, when the nominal p.d.f. in PQ is Gaussian, the nonlinearity IQ is a sym- 

metric soft Hmiter whose breakpoints depend on the noise variance but not on the signal 

amplitude: 

lo{x/a^-K/a,K/a) 

K{e)/a       , X  > K{e)a 

x/a^ ,     -K{e)cT < x  < K {e)a (4.9) 

-K{e)/cT     , X  < -K{e)a 

with K{e) and e related by 

fo{K{e))/K{e) - H-K{e)) = 6/2(1 - e) (4.10) 

and / o(^) = d^{x)/dx is the standard normal p.d.f. 

Comments 

1) Note that the theorem shows the saddle-point pair of p.d.f. and test only among a 

certain class T{1). We would like the left relation in (4.7) to be valid for any 

hypotheses test on the original observables {x, y}. Unfortunately, this could not 

be proved, unlike the case of a deterministic signal in [6], as will be clear in the 

sequel.   However, the class  r(/) is quite large.   As limiting cases it contains the 
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ple means of x  and y when e = 0^^^ the sample medians (e = 1) and with 

weak regularity conditions which usually holds [1] A^ and'Ay can be any transla- 

n n 

tion invariant statistics, such as A^=Y, aiX{i) provided   ^a,=l   (xj,-) are the 
1=1 i=l 

rank ordered samples ar^i) < X(2) <   • • •   < x^^^^), and similarly for Ay. 

2) The theorem remains valid (but /Q given by a different expression than (4.9)) for 

any other description of the uncertainty in the noise, provided the asymptotic vari- 

ance of the M-estimates (4.2) computed with /Q is the maximum achievable over the 

class of densities in Pg. An example is the P family [6]. Others can be found in 

[1U3]. 

3) In contrast to Huber's finite sample size test, this asymptotic test satisfies a more 

desired and natural optimality criterion. Namely, the maximin relation for the 

power Eq. (4.7) is specified in terms of the uncertainty in PQ alone, allowing the 

uncertainty in P^ to be induced by that in PQ as a shift of the densities of the qua- 

drature samples (recall the discussion in Section 1.2). 

4) Extension to unknown frequency is straightforward by constructing a parallel bank 

of SSQME tests, the i'^ best being matched to w^ = i /nT where T is the sam- 

pling period. This will be discussed in more detail in Section 5.3. The individual 

test is shown pictorially in Fig. 4.1. Note that a routine for solving for a zero of a 

function is needed.^ > Thus, a real time implementation in a radar or sonar system 

calls for substantially larger number of calculations than encountered in the more 

common detection systems that incorporate linear filtering, FFT and at most, pass- 

ing the samples through a nonlinearity. 

^ ' Thus the SSQME test is better (at least asymptotically) than the "scalar" envelope test which 
was derived in the preceding chapter. 

^ ' This is true except for the case where the nominal p.d.f. of the uncertainty family is Gaussian, 
where a considerable simplification is possible as will be shown later. 
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Figure 4.1- Block-diagram structure of SSQME test for robust 

detection of slow-fading narrowband signal. 

Proof of proposition 4.1 We need to study the asymptotic distribution of 

T{1), / G 'I'. It can be derived using the following lemmas from [ij, with a slight 

modification for time varying signal {s,- } from [6]. 

Lemma 1 Whenever / £ ^ and q is any symmetric p.d.f., conditioned on A and (p, 

vn {A^{l)-Ax) and vn {Ay{l)-Ay) are asymptotically distributed as normal r.v.'s with 

zero mean and variance V[l, q)     .  . 

V{l,q) 
EAl\x\ 

c d_ 
de 
-^E^[l{x -9)]\e = o 

,    C ^  Urn  ^  i:  5,2 (4.11) 
n  -» 00 7?   ,-_j 

where   the   parameters   [A^. ,Ay)   are   the   true   values   of   the   locations   (0   under   HQ, 

Aj. ^A cos(l> and Ay ^A sin^ under Hi). 
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Lemma 2 Let q 6 PQ be an e-contaminated mixture p.d.f. where the nominal p.d.f. / Q 

is symmetric and twice continuously differentiable, such that -log f Q is convex on the 

convex support of FQ. Then, there exists ?o G PQ which minimizes Fisher's information 

(4.5) over PQ and an /Q G * given by (4.4), and the asymptotic variance of the M- 

estimates satisfies a saddle-point relation 

sup    V{lo,q)=V{lo,q^) = l/I{q^)=   mf   V{l,q*) (4.12) 

I 

Specifically, qQ is given by 

^-0(2;) = (1 -e)-. 

/o(:ro)e^(^-^°)        x  < x. 

f oi^) XQ < X  < x^ ' (4.13) 

and  Xo< Xi  are  the  endpoints of  the  interval  where    | / 0' //0 I   "^ f^,  and  K   is 

related to e through •      • 

J   / o{x )dx  + = -— 

We note that the right inequality in (4.12) is a consequence of A^{IQ) and AMQ) 

being the maximum likelihood (ML) estimates of the corresponding location parameters, 

when the underlying p.d.f. is q^, under both hypotheses. In addition, they are efl"icient 

under the assumed conditions on *, i.e., they achieve the Cramer-Rao lower bound 

I~\qQ). The left inequality follows from the fact that q^ minimizes /(g) over Pg. 

Relaxation of the symmetry requirement and other noise uncertainty models are treated 

in [1], [3] and [6]. 

From Lemma 1 and the mutual independence of x and y, A^{1) and Ay{l) are 

independent and jointly Gaussian when ^ is fixed. Averaging over 4> is straightforward 

with transformation to polar coordinates and yields 
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/ (i,(/), iy(/) I A ) = E^[f (i,(/), A,[l) \A,ct>)f m   =■■■ (4.15) 

2^V[l,q) 
exp r(/) + A^ 

2V{l,q)/n lo 
A  T^l\l) 
V{l,q)/n 

T{1)^  A!{1)+A'{V 

where IQ{-) is the zeroth order modified Bessel function.   Also, 

/(r(/)|A) = 7r/(i,(/), iy(/)|A) (4.16) 

Now, restricting ourselves to the class of tests based on A^[l) and Ay(/) as the 

new observables of the problem, the likelihood-ratio is k{Aj^l), A^{1)\ A)= 

exp(-nA V2>^) lQ[nAT^I\l)/V\ which is monotone increasing in T{1) for any A , deter- 

ministic or random. Therefore, in view of the Neyman-Pearson Lemma T{1) is a 

sufficient statistic and a threshold test based on it is UMP for Hi. A > 0 vs. 

HQ.  A =0. 

Unlike the known lowpass signal case that was treated in [6], it can not be proved 

here that T{1) is a sufficient statistic of the original observables {x,y}. There, where 

the additive signal was non-random, use was made of theorems by Wald [23] and 

Chernoff [24] that a test based on the ML estimate d (i.e., solution to ^/(2:,--^)=0 with 

l=[-logf )' e*) is asymptotically equivalent to a NP test. In our problem, T{lo) is not 

the ML estimate of A ^ when the underlying quadrature noise p.d.f.'s are 50 ^^' • 

However, its expected value is J5'(r(/)) = A ^ + -^ V{1, q). Thus, it is asymptotically 

unbiased  and  the variance of  r(/o) has a minimax property  by  virtue of Eq.(4.12). 

Indeed, it can be shown that 

Var{n'/^T{l)) = 4A^V{l, q)[l + A-V[l, q)]      -^    _4A^V{l,q) 
n  » A- 

Hence,  T^'\IQ) is a good robust estimate of A , and as was discussed before, the class 

^ ' The MLE of A is given by solving 
n 

d log E^l n   qo{xi- A cos <f>) qoivi - A sin ({>)]/dA  = 0 
t =1 

which is analytically intractable unless go  is identically Gaussian. 
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{r(/)} is quite large. 

Having shown that in the restricted class of tests the optimal procedure must be a 

threshold test on the envelope T{1), it remains to validate Eq.(4.7) subject to (4.8). 

Using      (4.16)      with      the      definition      of      Marcum's      Q-function       Q{a,b)= 

J X exp[—-{x^ + a^)] lQ{ax)dx , and recalling that when / 7^ /g we are free to adjust the 
j ^ 

threshold t{l] in (4.6) such that a{l, q^) = a^ while for the pair (/Q, q) the threshold 

remains i(/o); the various false-alarm and detection probabilities are as summarized in 

Table (4.1). 

a{l, q) 0{l,q) = Q{a  =A y^n/VXTD, b   = ^/t{l)/V{l, q 

(^?o) exp[-t{l)/2V{l,q*)] a  =AyJn/V{l, q*), b  = 6, 

('o> ?o exp[-«(/o)/2F(/o, q*o a  = A y/n/V{l„q^) ^ a^, b  = V=2bg^ ^ 6, 

a = A ^n/V{l„ q) = ^oV ^('o, ?o )/^(/o, ?) 

Co,?) exp[-f(/o)/2F(/o, q 

b    = VnU)/VUo, q)= bo^v{lo, <}o)/V{lo, q 

Table 4.1- False alarm and detection probabilities for various test-p.d.f. pairs. 

Note that the parameter a^/2 defined by 

.2 o_^ /,      X _       nA 

2   ^  ' ^^~  2V{1, q) 
(4.16a) 

is the "effective integrated SNR,"  by  analogy with  the UMP detector for the purely 

Gaussian noise where the integrated SNR is given by the same expression with V —* a^. 

From the first and second row of the table, by monotonicity of the Q-function with 

respect to the first argument [a] when the second is fixed, and since from Lemma 2 

^mfj, ^(/,?o)= ^(/o-?o),weget: 
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^su^^(/, q^) = I3{IQ, go*) 

This proves the left hand side of (4.7). 

From the first column of the second and third row of the table, since the exponent 

function is monotonic increasing when V increases, by virtue of the other inequality in 

Lemma 2, we get   sup   a{lQ, q) = a(/o, q^).   It remains to find under what conditions 
? e Po 

/5(/o, q) =Q{a^C,b^C) > ^(/o, ?o), where C [q , q*^)^ VWoTqlWihT) > 1 for 

all q G PQ- Note that the Q function is monotonic in either of its arguments only when 

the second is fixed, but here they both change proportionally and the inequality is 

analytically intractable. A sufficient condition is found by solving for CQ with a fixed b^ 

those values which satisfy (//3(/o, q)/dC > 0, C > 1. Using known properties of the 

partial derivatives [15, Appendix F]: 

5Q^=,exp[-£!±li]/,(.,)    ,    ^QS^=-y,.^[-ll^\I,^,y)     (4.17) 

we obtain an equivalent relation which is sufficient for the right hand side of Eq. (4.7) 

J   > —   ,    \i      C > I (4.18) 

From the definition of the modified Bessel functions, II/IQ is monotonic increasing 

from 0 to 1 when the argument increases from 0 to infinity, so it suffices to solve (4.18) 

for C = 1. From the latter argument, and since it is necessary that the slope of the pro- 

bability of detection functional at C = 1 be non-negative, this becomes a necessary con- 

dition  as well. By continuity  and monotonicity of both sides of Eq.(4.18),  a solution 

exists, and upon fixing the false alarm probability {b^^ sJ-2 log ao) and by virtue of 

the monotonicity of the Q-function with respect to OQ, the solution of Eq. (4.18) with 

equality   defines   a   critical   value   ^^    such   that   when   /9(/o, go) = Q(<20) ^o) '^ I^Ci 

inf   P{lo, q) ^ /^('oi ?o ) ^ ^c ■ This completes the proof of proposition 4.1 
? e Po 
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Remark In the above, we have assumed independence of the in-phase and quadra- 

ture noise variates. However, the same result is valid also if they are circularly sym- 

metric, as this property is sufficient for asymptotic independence of the quadrature M- 

estimates (This is a special case of Appendix D, where the distribution of a "Doppler- 

bank" of SSQME tests is derived). As a consequence, the SSQME test is better than the 

"quasi robust" narrowband test that has been proposed by Kassam [12]. 

Some numerical values of ^Q are given in Table 4.2. It is seen that for typical false 

alarm levels /J^ ^^ 0.60. 

an 10-1 10-2 10-3 10-4 10-5 10-'^ -^0 
an 2.41 3.20 3.86 4.41 4.92 6.16 -6n 

Pa =g[an, 6nl 0.68 0.64 0.62 0.60 0.60 0.59 Q ^. ^ol 

Table 4.2 - Critical values of /3(/o, ^o ) for which the 
SSQME test is maximin robust, non-random amplitude. 

We note that the test in [6] for a completely known signal is asymptotically maxi- 

min robust only for Pc = 0-^ (regardless of a^), a fact that was not directly stated 

there. Closer examination of the situation in [6] reveals that (3c = 0.5 is due to the 

symmetry of the normal p.d.f. of the test statistics around its mean under both HQ and 

H^. This is not the case for the SSQME test, and results in a higher value. Neverthe- 

less, when designing a radar, sonar or communication system, the desired goal is in high 

quality detection. Consequently, systems are specified to achieve /?=0.8-0.95, and the 

technical parameters which result in the required SNR are designed accordingly. There- 

fore, obtaining the robustness of the SSQME test only for a limited range of /? is of no 

practical limitation. 

From the expression for /3{IQ, go) in Table 4.1, it is clear that the maximin bound 

is only slightly inferior to the detection probability in the uncontaminated case, where /? 

is given by the same equation but with a = A \fn ja. This is so since for small e , 

rv*{() ^Vil^, qo)/(T'^ «=; 1, as can be seen in Table 4.3.   (See also [3, p. 87]). 



44 

€ 0 .001 .002 .005 .01 .02 .05 .1 .15 .2 .25 .4 
rv*U] 1 1.01 1.02 1.04 1.07 1.12 1.26 1.49 1.75 2.05 2.40 4.0 

Table 4.3- Upper bound on the estimation variance (and upper bound on the 
loss in the effective integrated SNR), rv*[e) ^ V[IQ, q^ya'^. 

SSQME test for narrowband signal with non-random 
amplitude in nearly Gaussian noise. 

The corresponding maximin bound on the detection probability is depicted in Fig. 

4.2 for various values of a^, along with the results of the robust test on the envelope of 

Chap. 3 (marked RET). All the curves are computed with fixed input SNR = A'^/2a'^, 

such that the detection probability at the nominal Gaussian p.d.f. for all a^s is 0.9. 

Very similar behavior was obtained for other SNRs. A dramatic improvement in perfor- 

mance compared to the RET is clearly observed. While the effectiveness of the RET is 

limited to contaminations which are smaller than roughly twice the desired false-alarm 

probability, (note that RET curves with a^ < 10"^ are outside of the range of the figure) 

the SSQME test can protect against e which is of orders of magnitude higher than aQ, 

before the detection probability decreases substantially, roughly up to e =0.1 - 0.2. 
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Figure 4.2- Maximin bound on the detection probability vs. e, narrowband 
signal with non-random amplitude and unknown phase in nearly Gaussian noise. 

Full lines:   SSQME test. Dotted lines:  RET. 

1.0- /Scio.q?) 
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RET. 10 ,-4 
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K) 1-3    2     3 
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4.3 Random Signal Amplitude 

In radar-sonar applications, modeling targets with non-random amplitude is an 

oversimplification. W since in nominal Gaussian noise the coherent envelope test is UMP 

regardless of the signal amplitude statistics, it seems natural to try to also use its robust 

version, the SSQME test, for random amplitudes. Therefore, we will study the robust- 

ness of the SSQME test by averaging the asymptotic power of the deterministic case 

with respect to the assumed amplitude p.d.f. (Obviously, the false alarm probability is 

bounded as before.)   Two cases will be treated. 

a) Swerling Case 1 Target. 

This is the most common radar target, composed of many independent scatterers. 

The amplitude is Rayleigh, f {A) = 2A exp(-A ^/J^)/J^, for A > 0, A^ ^E{A^). It 

turns out that the performance of the SSQME test is somewhat less desirable than that 

for the deterministic signal case. 

Proposition 4.2 Under the conditions of Proposition 4.1 and a Rayleigh distributed sig- 

nal amplitude, the SSQME test with the nonlinearity /g of Eq.(4.4) satisfies 

^(^o,9)<^('o-Q'o) V 9€Po subject to Eq.(4.8) - i.e., go is the least- favorable p.d.f. 

under HQ but the most- favorable under Hi. However, when the nominal noise p.d.f. in 

PQ is Gaussian and /g is the soft limiter of Eq.(4.9), the right side inequality of Eq.(4.7) 

can be replaced by 

/?(^o, ?) > C /9(/o, go)    ,    0<C<1 (4.19) 
q ePo 

such that the constant C (which generally depends on e, a^ and /5(/o, qo)) approaches 

unity as e—>-0, a^-^O and as /3(/o,go )—»-l. 

Proof Upon averaging with respect to A , the power of the SSQME test is easily found 

to be 

"TTj  
^ ' Except when the target is a perfect reflecting sphere. 
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(3{l, q] = exp -t{l)/2V{l,q) 
1 + S{1, q) 

(4.20) 

where 5'(/, q) A nA' /2V{1, q). Thus, with the threshold t{l) set as in the first row of Table 

4.1, 
r 

/?(', ?o) = «0 : (4.21) 

Clearly, /3{l, q^) is decreasing in V{1, q^), hence  sup  /?(/, q^) = 0{IQ, q*). Unfortunately, 

the right side inequahty of (4.7) is never satisfied here: 

^(^0, 1o) 

Thus ^(/Q, qo), which is given by (4.22) with  r  = 1, is always higher. This is actually the 

second case that was discussed in Section 1.3. 

However, the SSQME test will practically be "almost" optimal robust (in the sense 

that for \f q G PQ the performance is bounded in a narrow neighborhood: 

I 0{^o, 9o)-/5('oW) I < ^(e, aQ, A) —>■ 0, according to the discussion preceding Fig. 1.2 

of Section 1.3), if the right hand side of the maximin relation (4.7) could be replaced by 

Eq.(4.19) such that the constant C (which generally depends on e, a^ and I3{IQ, q^)) is 

very close to unity. From Eq.(4.22), C is obtained for the p.d.f. for which r achieves its 

smallest possible value over Pg.   Some algebra yields 

log C = 
log    ttQ "' 

1 - '■min(e)    log /?(/o,  Qo] 
1        log/?(/o, go) (4.23) 

It is clear from this expression that c —»-l monotonically as a^-^O and as /•,„;„—>-l. 

Some basic calculus shows that this convergence is also true when /3(/o,go )"*■!■ At this 

stage we restrict the class PQ to the nominal Gaussian case. Using Eqs.   (4.9) and (4.11) 

K ^ 

V{lo,q)      =  ^ --^  (4.24) 

? =(i-£)Po+ eA . [J q[x)dx 
-K 

2 
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where go is the normal p.d.f. and K[e) is given in (4.10). It is not difficult to see that 

(4.24) and hence also r are uniquely minimized when A is a point mass at the origin, as 

each of the terms in the numerator achieves its minimal value and the denominator its 

maximal value; using Eq.(4.24) with (4.10) yields 

'■min(e)= inf 

? = (1 - t)?o+ eA 
^('o, 90 ) [1+6 V{lo, q*o * \l2 

hence r mj^ —»■ 1 as € —>• 0. 

(4.25) 

e .001 .01 .1 2 .3 .5 

K{e) 2.63 1.945 1.14 .862 .685 .436 

^0 '■min(€) .9910 .9396 .6108 .349 .177 .028 

10-2 
0.2 

r = 0.5 

0.9 

.995 

.999 

1-2 10-^ 

.97 

.994 

1-1 10-4 

.78 

.96 

.999 

.62 

.93 

.998 

.52 

.91 

.998 

.44 

.89 

.998 

10-4 

0.2 

0* =  0.5 

0.9 

.997 

1-5 10-4 

1-1 10-^ 

.98 

.997 

1-7 10-^ 

.89 

.98 

1-5 10-4 

.81 

.97 

.999 

.76 

.96 

.999 

.72 

.95 

.999 

10-^ 
0.2 

/3* =  0.5 

0.9 

.998 

1-3-10-4 

1-710-^ 

.99 

.998 

1-5-10"^ 

.93 

.986 

1-3 10-4 

.88 

.98 

1-5 10^ 

.84 

.97 

1-7 10-4 

.81 

.96 

.999 

10-8 

0.2 

0* =  0.5 

0.9 

.9987 

1-2 10^ 

1-5-10-^ 

.991 

.998 

1-3 10-^ 

.95 

.99 

1-2 10-4 

.91 

.98 

1-410-4 

.88 

.98 

1-5 10-4 

.86 

.97 

1-6-10-4 

Table 4.4 - The constant C such that /3(/o, q) > C /3{lo, q^), 

\f q e Po-   SSQME test for Sw.l target 

in nearly Gaussian noise. 
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The computation of (4.23) with (4.25) is summarized in Table 4.4. We observe that 

for the typical small a^s and large /^Q'S desired in radar-sonar systems, C is almost 

indistinguishable from unity, even for very large contamination e. Thus, for any g G PQ 

and for the the range of practical interest, the asymptotic power is almost equal to the 

maximin bound, and the SSQME test is "almost robust" as conjectured. As in the 

deterministic amplitude case, the performance of the SSQME test is characterized by the 

identical decrease in the effective SNR S{lo, qo)/{nA^/2a'^), which is very small for 

small €. Thus the qualitative behavior as in Fig. 4.2 is repeated here, with dramatic 

(asymptotic) improvement over the test of Chap. 3. 

Further thought reveals that this "almost robustness" is a consequence of always 

using the same fixed threshold. If it were also possible to precisely estimate the variance 

of the test statistic under HQ and to adjust the threshold accordingly: 

t{q*)=-2\naoV{qo)^t{q)=-2[naoV{q)=-2\naoV{q),      then      we      would      obtain 

/3{q)^aQ °'       >l3{q*)\/qE.Po-    Since  in  practical applications  almost  always the 

scale (variance) of the nominal noise p.d.f. is also unknown, adaptive thresholding will 

be unavoidable in conjunction with the robust structure to maintain CFAR. This will 

be treated in more detail in Section 5.2 

Comparing the known lowpass signal [6] and the non-random amplitude cases with 

the Rayleigh amplitude case, some thought suggests that the power fails to satisfy the 

desired maximin relation exactly, due to an absence of a mode in the p.d.f. of the test 

statistic T{IQ) in the present case. To verify this, we also consider the following case 

which does possess a mode, and represents some physical targets. 

b)   Swerling Case 3 Target. 

This model corresponds to one dominant reflector plus Rayleigh;  the  amplitude 

p.d.f. is f {A) = 8Ahxp{-2A^/A^)/A^ for A >0 [17]. In this case, the desired 

behavior of the deterministic amplitude case is possible. 
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Proposition 4.3 Proposition 4.1 is valid for a Swerling 3 target model. 

Proof The power of the SSQME test is found, in a manner similar to [13], by averaging 

the non-random amplitude result with respect to the above amplitude p.d.f., and is given 

by 

I3{l,q) 1 + 
t{l)/2V{l,q) 

[l+S{l,q)/2){l+2/S{l,q) _ 

With the threshold set according to the known p.d.f. QQ, 

exp 't{l)/2V{l,q) 

l + S{l,q)/2 
(4.26) 

l3{l,qo) 
logaoS{l, q*^)/2 

{l + S{l,q*)/2f 

Denoting S[l, qQ)/2 = y and differentiating. 

a, 
l/[l+5(/, ?')/2! 

dy (1+2/r 
[2(1+2/) - 2/logao 

which  is positive for all y  > 0,  hence   sup ^(/, q^) = (3{lo, q^) follows by virtue of 

(4.12). Also, with i(/o) = -2F(/o, go*)logai 0) 

/?(^o, ?) = 
Iogao5'(/o, 9o)/2 

a. 
U[r+S{l,.g^)/2] 

(4.27) 
{r  +S{lo,q^)/2f 

here    r   A V{lo, q)/V{lo, q^) < I    as    before.      Denoting    S{lo,qo)/2 = x     and 

differentiating with respect to r , yields 

w 

d^{lo,q)         ao'^^'^-^Uoga.     ^    , 
 [X + logag X - r- (4.27a) 

dr [r+xf 

Non-negativity of the term in square brackets for all r <1, is sufficient for 

/^(^o> q) > ^(^0. qo)- Clearly, from the solutions of the quadratic equation in x the 

positive root has to be taken, hence 

(4.28) 

S{^o, go ) > 'S'c = max{-log ag + A/log-ag + 4r- } 
r <1 

-logao + i/log-ao + 4 
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From (4.27a),  it  is clear that (4.28) is also necessary for the right hand side of the 

saddle-point equation. (If it was not, /9(/o, q) would have decreased at ^ = ^Q). 

The critical values are given in Table 4.5; they are somewhat higher than those of 

the deterministic amplitude case, but still in the range of practical interest. Since the 

one-dominant-plus-Rayleigh p.d.f. corresponds to Chi-squared p.d.f. of A' with 2 degrees 

of freedom, while the non-random amplitude can be regarded as the limit of the Chi- 

squared family when the number of degrees of freedom N tends to infinity, it is conjec- 

tured that whenever the amplitude squared belongs to this family but N 7^ 1 (Ray- 

leigh), there exists a ^^ such that when /3(/o, ?o ) > /?c the SSQME test is asymptoti- 

cally maximin robust, and /SQ decreases when A'^ increases. It seems, however, that each 

case needs a separate derivation to prove this conjecture. 

«0 10-1 10-2 10-^ 10^ 10-^ 10-^ 10-^ 

Sc 5.36 9.70 14.1 18.7 23.2 27.8 36.9 

^c 0.78 0.75 0.743 0.740 0.738 0.738 0.737 

Table 4.5 - Critical values of /3(/o, go ) for which the 
SSQME test is maximin robust, Swerling 3 target. 

4.4   Relationship with Weak Signal LORD 

For a given observation sequence, the M-estimates defined by Eq. (4.2) are fixed 

numbers; they are expected to be close to zero under HQ and also under H^ when A is 

small, due to the robust properties of the estimator. Thus, an approximation is obtained 

by expanding the summands of (4.2) in a Taylor series in powers of A , and then solving 

(4.2) using only the two leading terms.   This yields 

!=1 

(4.29) 
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The second approximation is justified as follows: For nominal Gaussian p.d.f. with 

the optimal robust nonlinearity /g, the denominator just equals the number of a;,- which 

are in [-K{e), K {e)]; it is quite close to n when e is small (since K{e) is then larger than 

the variance of the samples), and only weakly changes for different realizations of x. 

All of the locally-optimal robust detectors that have been studied in [4], [5], [9], [10] 

and [12] are based on this test statistic, and thus they all hide an "approximate robust 

estimator of zero." It is worthwhile to note that the weak result of [4] and [5], namely, 

the LORD satisfies the maximin relation Eq. (1.10) on the slope of the power function at 

A =0 only for a > a^;^{e) is actually a consequence of this approximation. (It should 

be noted that this lower bound is much larger than false-alarm levels of any practical 

interest).   Though  the incremental SNR =   lim    ^      J     is identical with  (4 16al 
A - 0   VAR (A) \ ■      i> 

the numerator and denominator are somewhat different from those stated in Lemma 1 

Ei{A)\^^o = A E^{1' )+0{A'); VAR {A) \ ^ ^^ = 1-E^{1^) (4.30) 

Thus there are actually two related optimization problems (for a and /? ), which are not 

parametrized by the same functional V{l,q) as in the SSQME test; this leads to a 

different condition that must be satisfied for Eq.(l.lO) to hold - see [4], [5]. 

The same approach could be taken for our problem. The structure of Eqs. (4.3)- 

(4.6) is preserved, but the M-estimators are replaced with A of (4.29). The locally- 

optimal robustness can be verified using similar techniques as those in [4]. Under the 

regularity conditions stated in [4], which require more than the conditions in (4.1), the 

central limit theorem is satisfied and the detection probability is again Marcum's Q- 

function where the parameters {a, b } are modified according to (4.30). Using the 

expression for — g (a, 6) in Eq. (4.17), along with /i(0) = 0, // (0) ^ 0, it can be 

shown that the right side inequality of Eq. (1.10) is satisfied, and thus the detector is LO 

robust, for a limited range in the false alarm probability given by 
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«0 > «min(e) =   min   [d{q)e{q )]-2/l^ (?) " ^l (4.31) 

wh ere 

d{q) a   j^' (,,\    >   d[q)> 1   V?  GPo (4.32) 

and 

e(g) J—^—-   ,   e(g)> 1   Vg ePo (4.33) 
^?('o ) 

where lg = -[ln q^)' is the locally-optimal nonlinearity. The inequality in (4.32) is 

valid since /Q' is zero over the interval where the least-favorable p.d.f. go of Eq. (4.13) 

puts all of its contamination; the one in (4.33) is valid due to the last mentioned fact on 

go and to the additional regularity requirement that /Q is monotonic nondecreasing. 

Because of this, the false alarm bound of Eq. (1.3) is obtained also here for V a e (0, 1), 

but not by the same derivations as for the SSQME test. Utilizing these inequalities, it is 

easily verified that a^:,J^e) 6 (0, 1). However, we have not solved (4.31) to see if the 

actual values are small enough to be acceptable, as we beheve that the SSQME test is a 

preferred solution; it is neither restricted by any ^^[^(e) nor limited to weak signals. This 

conclusion has been verified by simulation results, to be presented in Section 5.4 
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5. ROBUST DETECTORS FOR A REALISTIC ENVIRONMENT 

The derivation of maximin robustness of the SSQME test in Chap. 4 was based on 

several major assumptions, all of which have been required for previous studies of robust 

detection [4]-[12]. The following were assumed as completely known: a) the percentage 

of contamination e, b) the nominal p.d.f. in the class PQ; specifically, the variance was 

assumed known for the nearly Gaussian case, c) the frequency of the signal to be 

detected. Such knowledge concerning the detection environment is usually absent in 

any realistic application where robust procedures are needed. This is particularly true 

under the detection environment of radar (sonar) systems where the clutter (reverbera- 

tion) processes rapidly change in time and space. This section extends the utility of the 

SSQME test for such situations, and ends with a finite-sample Monte-Carlo analysis. 

5.1 Sensitivity to Unknown e 

In many previous investigationss [4]-[12] the amount of contamination e was 

assumed known. Clearly, this might not hold for a nonstationary and nonhomogeneous 

detection environment. Theoretically, when any knowledge of e is lacking, the mixture 

family is no longer convex and is not defined well enough to allow an optimum robust 

test. In practice though, it might be possible to bound e<e^^ based on physical con- 

siderations. (If €max=l) the robust estimators of the SSQME test reduce to median esti- 

mators). 

An obvious but apparently unstated observation is that any density of the form 

/ (x ;€) of Eq. (2.3a) belongs to the mixture family Po(emax)    ^7/    e^^max^ 

(1-e)/ o+eh = (1-e^J/ o+uJ{l-^)f ^+^h ] =   • • • (5.1) 

and the expression in square brackets h'    is a legitimate density because it is positive 

(l-e/€^ajj>0) and integrates to unity. 
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Table 5.1 shows the asymptotic variances of the M-estimators of Eq.(4.2) when the 

input noise density is a Gauss-Gauss mixture and c^ is the variance of the contaminat- 

ing density. They were computed from Eq.(4.11) with the soft- limiter of (4.9-4.10). In 

each sub table the limiter break-point k is designed according to e^^^, and the variances 

are given for €<emax- Also indicated in the headings are the upper bounds on the estima- 

tion variance computed with the least-favorable density. It is seen (and can be shown 

analytically using the properties of the Gaussian c.d.f. when solving (4.11) in conjunction 

with (4.14)) that the variance monotonically increases with e and c to the minimax 

bound. A similar behavior occurs with the detection probability since it is a monotone 

function of the effective SNR Eq.(4.16a), which is inversely proportional to the estima- 

tion variance. 

The main conclusion from the table is that, even when the test is designed for large 

^max; ^^e variance is much smaller when actually e«eniax- An even more important con- 

clusion is drawn from Table 5.2, which shows a very pessimistic case; the test is designed 

with k (€n,ax = O-^)) ^"^^ the entries in the table are the ratio of variances between those 

obtained with this design, and those that could be obtained if e was actually known and 

k{e) was used- Var {k{e^^),e)/Var {k {e),e). It is clearly seen that even for e=0.001 the 

efficiency lose is merely about 28%. This is translated to an increase of only 1.07 dB in 

the SNR required to achieve the same P^ . When ej^^x can be more tightly bounded, the 

difference is even smaller. 

Similar behavior is found when the contaminating density is the longer tailed 

Laplace density, as can be seen by dividing the entries of Table 5.3a by the correspond- 

ing ones in 5.3b. (Here however, the variance is not monotone with e for small c ). 

To summarize this discussion, we have: A design with e^^^ preserves the maximin 

robustness properties for Ve<€majo a-^d the loss incurred from not knowing the actual e 

is shown numerically to be reasonably small for the Gauss-Gauss and Gauss-Laplace 

mixture families considered. 
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Table 5.1     Estimation    variances    with     fixed    limiter     ^ (cmax)    for     ^^^r 

Gauss-Gauss mixture. 

EPSMAX=0.005  K(EPSMAX)= 2.160  VMAX(K)=1.037 

F=(1-EPS)*N(0,1)+EPS*N(0,C**2) 

EPS/C       1 3        10        30       100 
************************************************************* 
0.0010 1.0066 1.0097 1.0116 1.0123 1.0125 
0.0020 1.0066 1.0127 1.0167 1.0180 1.0184 
0.0030 1.0066 1.0158 1.0218 1.0237 1.0243 
0.0040 1.0066 1.0189 1.0269 1.0294 1.0303 
0.0050 1.0066 1.0220 1.0320 1.0351 1.0362 

EPSMAX=0.010  K(EPSMAX)= 1.945  VMAX(K)=1.065 

F=(1-EPS)*N(0,1)+EPS*N(0,C**2) 

EPS/C       1        3        10       30       100 

0.0020 1.0121 1.0177 1.0210 1.0220 1.0224 
0.0040 1.0121 1.0233 1.0300 1.0321 1.0328 
0.0060 1.0121 1.0289 1.0391 1.0422 1.0432 
0.0080 1.0121 1.0346 1.0482 1.0523 1.0538 
0.0100 1.0121 1.0403 1.0573 1.0626 1.0644 

EPSMAX=0.050  K(EPSMAX)= 1.399  VMAX(K)=1.256 

F=(1-EPS)*N(0,1)+EPS*N(0,C**2) 

EPS/C       1 3        10        30       100 
************************************************************* 
0.0100    1.0467    1.0695    1.0807    1.0840    1.0852 

0.0200 1.0467 1.0928 1.1157 1.1226 1.1250 
0.0300 1.0467 1.1165 1.1518 1.1625 1.1662 
0.0400 1.0467 1.1408 1.1890 1.2037 1.2088 
0.0500 1.0467 1.1655 1.2274 1.2464 1.2530 
************************************************************* 
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Table 5.1 (continued). 

EPS/C 

EPS/C 

EPS/C 
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EPSMAX=0.100  K(EPSMAX)= 1.140  VMAX(K)=1.490 

F=(1-EPS)«N(0,1)«EPS*N(0,C»*2) 

10 30 100 
******** 
0.0200 1.0812 1.1239 

tt**i 

.1433 1.1490 
***i 

.1509 
0.0400 1.0812 1.1685 .2092 1.2214 .2254 
0.0600 1.0812 1.2149 .2793 1.2989 .3053 
o.osoo 1.0812 1.2634 .3539 1.3817 .3909 
0.1000 1.0812 

********** 
1.3139 .4333 1.4706 .4829 

EPSMAX=0.200  K(EPSMAX)= 0.862  VMAX(Kt=2.046 

F=(1-EPS)«N(0,1)*EPS*N(0,C*'2) 

1 10 30 100 
*1 

0. .0400 . 1393 
***! 

.2221 1.2574 1.2678 
• **i 

.2706 
0. .0800 .1393 .3121 1.3904 1.4142 .4208 
0. .1200 .1393 .4102 1.5411 1.5818 .5933 
0, .1600 .1393 .5175 1.7125 1.7748 .7928 
0. .2000 .1393 .5350 1.9083 1.9982 2, .0249 

EPSMAX=0.300  K(EPSMAX,= 0.685  VMAX(K)=2.822 

F=(1-EPS)«N(0,1)*EPS*N(0,C**2) 

10 30 100 

0.0600 
***i 

.1916 
***i 

.3162 
***« 

1. .3684 
***i 

1 .3838 
***i 

1, 
********** 
.3870 

0.1200 .1916 .4580 1. .5802 1 .6177 1 .6260 
0.1800 .1916 .6200 1. .8367 1 .9058 1 .9220 
0.2400 .1916 .8061 2. .1508 2 .2655 2 .2941 
0.3000 

*«*i 
.1916 2. 

***« 
.0214 2. 

**«« 
.5405 2 .7219 2 .7698 

EPSMAX=0.400  K(EPSMAX)= 0.555  VMAX(K)=3.996 

F=(l- -EPS)*N(0, 1)»EPS*N(0, ,C"2) 

EPS/C 1 3 10 30 100 

o.oaoo 1. .2395 1.4087 1.4794 1.5007 1.5061 
0.1600 
0.2400 
0.3200 
0.4000 

1 
1, 
1. 
1. 

.2395 

.2395 

.2395 

.2395 

1.6100 
1.S518 
2.1455 
2.5064 

1.7855 
2.1838 
2.7140 
3.4395 

1.8409 
2.2945 
2.9160 
3.7973 

1.8557 
2.3256 
2.9761 
3.9099 ******************* ************************* 

EPSMAX=0.500  K(EPSMAX)= 0.436  VMAX(K)=5.928 

F=(1-EPS)*N(0, 1)*EPS*N(0,C"2) 

EPS/C 1 10 30 

0.1000 1.2916 
***i 

1 .5086 
*«*< 

1 .5999 
***! 

1 .6267 1 . 6294 0.2000 1.2916 1 .7789 2. .0195 2 .0949 7 . 1047 
0.3000 1.2916 2. .1211 2. .6094 2, .ll'^l 7 .8021 0.4000 1.2916 2. .5626 3. 4734 ?, .8124 1 .8808 0.5000 1.2916 3. 

***4 
.1447 4. 8072 5. 

***» 
.5038 5. 

***« 
,6726 
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Table 5.2 ratio of estimation variances between designs witli fixed  k (eniax=0.5) 

and variable A; (e),Gauss-Gauss mixture. 

VAR(K(EPSMAX))/VAR(K(EPS))  EPSMAX=0.500  K(E PSMAX)= 0.435 

F=(1-EPS)*N(0,1)+EPS*N(0,C**2) 

EPS/C       1        3        10        30       100 
************************************************************* 
0 .0010 .2897 .2868 .2838 1.2828 .2824 
0, .0050 .2832 .2734 .2645 1.2617 .2604 
0, .0100 .2762 .2605 .2471 1.2428 .2409 
0, .0500 .2340 .1963 .1687 1.1600 .1547 
0, .1000 .1946 .1482 .1162 1.1062 .0987 
0. .2000 .1337 .0880 .0582 1.0484 .0394 
0. .3000 .0839 .0493 ,0271 1.0194 .0117 
0. ,4000 .0420 .0224 .0099 1.0040 .0031 
0. .5000 .0000 .0000 ,0000 1.0000 .0000 
************************************************************* 

Table 5.3   Estimation    variances   for   Gauss-Laplace   mixture,    a)    Fixed    k{t^^). 

b)Variable k{e) 

EPSMAX=0.500  K(EPSMAX)= O.U36 VMAX(K)=5.928 

F=(1-EPS)*N(0,1)+EPS*LAPLACE(0,0**2) 

EPS/C      1        3       10       30      100 

0, ,1000 1 .1863 1 .U343 1. ,5708 1 , .6172 1 , ,6379 
0, ,2000 1, .0922 1, .5996 1, ,9U03 2, ,0676 2, , 1252 
0. ,3000 1 .0076 1, .7924 2. ,U'+25 2. ,7139 2. ,8392 
0, ,U000 0 .9311* 2 .0189 3. , 1U78 3, ,68U8 3. ,9U11 
0, ,5000 0, .8626 2, .287U k. .1795 5. .2347 5. ,7638 
»*♦»***»»*********«♦»*#******#♦#*»**»*•»•******»»#***♦*»#»»*»** 

VARIANCES WITH OPTIMAL K(EPS) 

F=(1-EPS)»N(0,1)+EPS»LAPUVCE(0,0**2] 

EPS/C      1 3        10       30      100 

0, ,1000 1 , .01438 1 .2455 1 . ,3979 1, .4570 1 , .4799 
0, ,2000 1 , .0318 1 .4711 1 . ,8222 1 .9647 2, .0244 
0. ,3000 0, .9914 1 .7138 2. ,3675 2 .6536 2, .7837 
0, ,4000 0, .9327 1 .9821 3. , 1101 3 .6591 3. .9318 
0. ,5000 0, .8626 2 .2874 4. .1795 5 .2347 5 .7638 
»*#*****»***«*»*«»*******»*»*************************»*»*»»»* 
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5.2 Robust Scale Invariant Tests 

The scale u of the nominal density in the e-mixture family affects the implementa- 

tion and performance of the SSQME test in two ways. First, u must be known for con- 

struction of the optimal robust M-estimates, as the break points of the nonlinearity are 

functions of it, Eq.(4.14); e.g., they are equal to ±(jk[e) for the nominal Gaussian case. 

Second, the detection threshold setting t{lf^ must be proportional to ^(/Q.^O) to obtain 

the desired a.^ level, (see Table 4.1), and V itself is proportional to a^. Even if the 

optimal M-estimators are replaced by some other robust and scale invariant estimators 

of the quadrature locations, the second crucial problem must still be addressed. 

In the specific case of nominal Gaussian density, which is the main interest of our 

work, the first problem is solved together with a substantial simplification in implemen- 

tation complexity by utilizing Tukey's alpha-trimmed mean estimator instead of the M- 

estimator. This estimate is defined by: 

r„ = 1 
n(l-2a) 

n -\-\n a| 

1=2+ n a 
(5.2) 

where 2;(,) are the ordered samples: 2:(i)<a:(2)< 2:(„), and \na\ is the greatest integer 

in n a for 0<a<0.5. The estimator simply deletes \n a\ samples from each end and then 

takes the weighted mean of the remaining. Its advantage over Huber's M-estimator is 

that solving an implicit nonlinear equation is not necessary. With the above weighting it 

is translation invariant for all n (and unbiased whenever Ej [x^) exists). Bickel [33] 

showed that it is asymptotically Gaussian and its variance for symmetric /   is 

Var{^^:x:)t^l= 
(l-2a) 

J x'^f {x)dx+axi_a (5.3) 

where F(a;i_„)=l-a. The two estimators are quite similar for proper choice of a and 

k{e); they both sum linearly the main bulk of the samples, but Huber's estimator treat 

large samples and outliers by limiting them, while the a-trimmed estimator censors them 
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completely. The main difference is that for small n the a -trimmed will always discard 

some of the observations, even if they all are small and come from the nominal, while 

the other might not. For n->-oo, however, they are equivalent in quadratic mean. The 

variance of Huber's estimator with the soft- limiter nonlinearity IQ{X ;-k, k) IS 

k 

2[Jxy {x)dx +k^F{-k)] 

"""■^' - ^-M?Hf  f^-^) 

This is identical to (5.3) when one choses a{e)=F {-k {e)). Hence they both have the 

same asymptotic distribution with fixed F. Moreover, the trimmed-mean estimator is 

also minimax for e-mixture family with Gaussian nominal [3], hence it can be substituted 

in the SSQME test without change in its properties. 

Two different asymptotically scale invariant extensions of the SSQME test are next 

discussed. The difference between them depends on the availability of a "noise-reference" 

channel. 

a) "Sliding-Window" robust quadrature test 

We follow the definitions and the physical setup of section 2.2. In addition to the 

"test-cell" samples {x,y}, there are also available M "noise- reference" vectors of obser- 

vations: {uij,Vij},i =l,...n,j =1,...,M. ujA{uij}i"^i,j =l,...M are statistically 

independent vectors that are identically distributed as x is under HQ, and likewise for 

Vj and y. An adaptive threshold test is constructed by using the SSQME structure in 

both the "test-cell" statistic R{x,y) and in the threshold estimator W{u.,v) of Eqs.(2.8)- 

(2.11). Specifically, the test is 

DECIDE      H,    iff     R,{x,y)       >      t{M)W,{n,v) (5.5) 

where i?a(x,y) is identical with r„(/o) of Eq.(4.3) with the M-estimators A^ and Ay 

replaced by the a- trimmed means of the x and y samples, respectively. In a similar 

M _        _        _ _ 
manner,   W^{n,v)={l/M) J] Wj„, where   Wj^=Ujl+Vjl ;   Uj„ and   V)„ are the a- 

;=1 
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trimmed means of Uy and Vy , respectively. The test structure is shown in Fig. 5.1. 

Fig. 5.1 Sliding-Window scale invariant SSQME robust test 

TEST-CELL 

REFERENCE (NOISE-ONLY)CELLS 

{U|V,}r 

{^^w] 

;AS ABOVE; 

- I 
w 
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We can summarize the properties of this test in the following proposition: 

Proposition 5.1 Consider the detection problem with the observables of Eq.(2.7), with 

the uncertainty in the distribution of the quadrature noise samples obeying an e-mixture 

model PQ^, where the scale cr of the nominal Gaussian distribution is unknown. Let D^^^ 

be the class of all hypothesis tests of the form R{T^, Ty)> 

hl^i^a >^v .i=li ■ ■ ■ M) where W and R are as in Eq. (5.5), with the a-trimmed 

estimators replaced by any other asymptotically normal, translation invariant and scale 

equivariant statistic T (i.e., T[crx+a)=aT {x)+a). Let d{a) EDM be the test with a- 

trimmed estimators, and let D^ be the class of all decision rules based on {T^,Ty} - i.e., 

without imposing the structure of Eq. (5.5) and precluding reference samples.   Then: 

a) The test is DF-CFAR for any q EPQO- and 

Pf,={l+t{M)/M)-^ (5.6) 

b) If a*{e)=Fo{-k{e)), where FQ is the c.d.f. of q^, then q^ and d*{a*{e)) are a 

saddle-point pair in (Po^) ^M ) for the asymptotic detection probability 

SMp^{q*,d) = 0{q^,d*)        = M /3{q,d*) 

i.e., the test is asymptotically maximin robust. This is true for any distribution of the 

amplitude A , or for any amplitude level if it is deterministic. For the Rayleigh signal 

case, P{qQ,d*) is given by 

0{qo,d*) 1- 
1+5(90*) 

>     S{q^) = ^I{q^{a=l)) (5.7) 
2a- 

c) When also M—»-oo, d* is equivalent to the Neyman-Pearson test in the wider class 

DQO for qQ{a=l) - i.e., assuming that a is known and only {T^,Ty} are available as 

observables. 

Remarks 1) Unlike the previously studied SSQME tests, here the threshold multiplier 

t{M) is  not   a function of the variance of the location estimators  T, hence the DF- 
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CFAR property. 2) Unlike the cases of Chap. 4, the lower bound on the detection proba- 

bility is valid for all A >0; in particular, this test is also maximin for the important case 

of a Rayleigh signal, in contrast to the non-adaptive test of Section 4.3, case a). As will 

be clear from the proof and from the discussion of Section 1.3, this is a result of the 

CFAR property. 3) The detectability loss incurred by the adaptive threshold scheme is 

typically small for M>20, cf.   [18-20]. 

Proof a) First note that by the equivariance assumption, all tests in D^^^ are scale 

invariant, even for finite n . By asymptotic normality, the unknown estimation variance 

V{q ,T) appears as a common positive scale factor on both sides of Eq.(5.5), and can be 

divided out. Define .    r 

r-(x)+r-(y) I I  M 

^  =    2V{q,T]/n      '   '''=2F(,,r)/n)M,St^"'^"^-)+^'''("^-)l 

Clearly, W is chi-squared distributed /v^(u; )=(1/(M-1)!)M^^ w^-ie"^"" [/(w), and 

under HQ, f^[r)=e''' U{r). Since W and R are independent, Pfa=PQ{R>tW} is 

simply computed and given by (5.6). 

b) Define also 9=ta.n~\T„{y)/T„{x]). With this transformation the density of R is com- 

puted straightforwardly as 

0 -1^ W iJ j i^ U -J j 

and in a manner similar to the derivation of Section 4.2, 

l3Miq, T \A,w)=P^{R>tW \A, W=^w}=Q[A[--^^fl\{2twfl''\ 

By monotonicity of the Q function with respect to the first argument when the second is 

fixed, and since A is positive, a minimax property on V[q,T) is translated to a maxi- 

min property on the conditional detection probability, which in turn imply maximin on 

the unconditional detection probability for all F [A ), since : 
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/3M(?> T)=JdF{A)J/3j^{q, T \A,w)dF{w) 
0 0 

The derivation of (5.7) is straightforward with substitution of F{A) and F{W]; the 

result is equivalent to the pure Gaussian case (compare [18-20]), if the effective SNR is 

changed as indicated in (5.7). 

c) According to a well known convergence theorem,  if {Yi, Yo, } is a sequence of 

r.v.'s that converge in probability to y >0, then the distribution of the r.v. Z„=X/Y„ 

converges to Fx{yz). Clearly, the normahzed adaptive threshold estimator W converges 

in probability to 1 as M—t-oo, since it is just a sample mean. Hence, substituting t{M) 

from (5.6), 

Jim /3,^(g , r M ) =:   lim Pi{ A >t\A}==\imQ{A {       \   )'/\ {2t{M)-l)'/''] = 
A/-»oo Af->oo W M->oo V[q,l  j 

where the last limit follows from the dominated convergence theorem and from 

L'Hospital's rule. Since this expression is identical with the detection probability of the 

optimum asymptotic detector which operates on the transformed input observations 

{T„{x), r„ (y)}, see Section 4.2, the left side of the saddle-point relation is extended to 

the wider class D,^. In particular, notice that the limit (A/—t-oo) of Eq.(5.7) is indeed the 

(exponential) detection probability of the Rayleigh case. 

Remark In the proof, we did not utilize any property of the e-mixture family. 

Therefore, the proposition is valid for any test based on asymptotically normal, shift 

invariant and scale equivariant estimators, whose variance is minimax in some family of 

distributions P. Some examples are: 

a)      The set of all distributions differing at most by e in Kolmogorov's distance from the 

Gaussian cumulative of known scale, and the corresponding M-estimator - see [3]. 
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b) The set of all P-point distributions P={/ :// {x)dx=p }, and the corresponding 
-a 

M-estimator - see [6]. 

c) The set of all distributions with equal variance - this problem is interesting within 

the context of optimal minimax jamming . It turns out that the saddle-point solu- 

tion is nothing but the Gaussian distribution and the quadrature test based on the 

sample-means. Since the saddle-point (within the sub-optimal set of SSQME tests) 

happens to coincide with the global UMP test at that point, it is also the minimax 

solution in the set of all tests - see [45]. (We also show there that the same is true 

even when the noise quadrature samples are not assumed a-priori identically distri- 

buted). 

d) The set of all e-mixture distributions with arbitrary symmetric nominal / o of unk- 

nown scale. Here, the a- trimmed mean is not the optimal estimator, although it is 

still robust in Hampel's sense as will be discussed in the following. The appropriate 

estimator is either from the class of L- or R-estimators^ As before, we take the 

optimal estimator for the same least favorable p.d.f. of Eq. (4.13). The location 

invariant and scale equivariant L-estimators are given by L„{x)= Xl'^m ^(i)> etc., 

where the weights are generated from a score function m(s) according to 

i jn 

0-ni =     J    m{s)ds (5.8) 

and m(-) is related   to q^ of Eq.(4.13) through 

1       d^ 

m{F^{x))- 

where 

r^   *, , j(-log/o(^;l))    hi  <^1 
I[qo)  dx^ 

0 , otherwise ' ^^'^^ 

The SW structure with R-estimators is an overkill. It is possible to obtain DF-CFAR 
performance and maximin detection probability with a quadrature test based on 
robustified rank statistics. This subject is studied in detail in Chapter 6. 
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f ^{x,;\)/k-Fi~x,-l)=,/2{l~,) ,   l/o' {xi,l)/f^{x^-l)\=k 

Notice that also here the censoring percentage is Fo(-Xi). The minimax relation 

on the estimator's variance remain valid (where V{q^)=\/I[q*))^ due to the 

asymptotic equivalence betvi^een L and M-estimators [Jaeckel, 46], provided the a„,- 

are chosen as above. (Stigler [47] proved later that if the nominal p.d.f is any sym- 

metric, twice differentiable and strongly unimodal p.d.f. on /? \ the L-estimator 

corresponding the above score function is indeed asymptotically Gaussian with the 

variance assumed in [46]). 

To summarize, the SW adaptive threshold extension of the SSQME test is a suit- 

able choice for radar-sonar systems where "noise-reference" samples are conveniently 

available. It possesses all the desired asymptotic maximin properties; its implementation 

m the nominal Gaussian case is relatively easy based on a-trimmed estimators which do 

not require more than ordering of the data, an operation that is common to most non- 

parametric tests and is becoming available for real time implementation with VLSI tech- 

nology [16]. 

b)SSQME test with a preliminary scale estimate 

We assume now that {x,y} are the only available observables, and the nuisance 

scale estimate must be derived from the "signal plus noise " data itself ^. We draw and 

build on Huber's theory [3] of simultaneous estimation of location and scale. For com- 

pleteness of the presentation, we next quote and make some interpretations on Huber's 

main results: 

i)       Simultaneous M-estimates for location  and scale are a pair of statistics (r„,5„) 

determined by solving equations of the form 

In radar/sonar applications in a nonhomogeneous environment, utihzation of spatial 
adjacent observations (as in the SW structure) is not justified if the reference observations 
are not identically distributed as the main observations. 
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^^^i^)     =     0 (5.10a) 
1 = 1 ^n 

" X-T 
Ex(-^ )     =     0 (5.10b) 

These   are   similar   to   the  ML   estimates  of  9   and   a  for   a  family   of  densities 

1 X -0 
— f ( ), with proper selection of ^ and x- As most common test statistics and 
a a 

estimators depend on the samples only through the empirical distribution function 

-f'n (x ; x)^—^/jj. <j,|, where I^^y is the indicator function of the set A, it is 

convenient to express r„ (x) = T{F„) and 5„ (x) = 5(FJ in terms of the func- 

tionals defined by: 

/^(^5|^)^(^-)     =     0- (.5.11a) 

Ix{^^jj^)F{dx)     =     0 (5.11b) 

Hampel's [34] influence curve (IC) is a very useful heuristic tool of robust statistics, 

which describes the (suitably normed) limiting influence of a single observation on 

the estimator. Intuitively, a qualitative robust estimator must have a bounded IC. 

If Vn [T{Fn) - T{F)\ is asymptotically zero mean Gaussian, its variance is given 

by (using (5.13) below)- 

V{F,T)    =    JlC\x;F,T)F{dx) = S\F)-^ ^H^ ^       (5.12) 

ln^)Fidx: 

with a similar expression for V{F ,S). If (and only if) F and x are symmetric, and 

^ is skew-symmetric, the IC's of the simultaneous estimates are uncoupled; in par- 

ticular, only S(F) but neither the IC nor the asymptotic variance of S enters into 

the expression of IC(T).   The IC's are given by: 

IC{x;F,T)     =      ^iLJ     . (5.13) 
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IC{x-F,S)     =      ^in  (5.14) 

Note that for a given distribution, T(F) and S(F) are numbers; T„ and S„ are 

Fisher consistent estimates if T(F) and S(F) are equal to the estimated parameters. 

Under the above mentioned symmetry conditions, the estimates are asymptotically 

uncorrelated and hence independent. 

ii) The asymptotic robustness (in Hampel's sense ) is clear from (5.13)-(5.14), provided 

that ^ and x are bounded functions. In Section 6.4 of [3] it is shown that under 

relatively mild conditions the coupled estimates are consistent, 

{T„,S„) —+ {T{F),S{F)) in probability, and are jointly Gaussian. 

iii) The IC of T for the case when the nominal scale is known is given by the same 

expression as (5.13) but with S(F)=1. If S(F) does not change too much when 

FEPQ (a property which must be satisfied for any reasonably consistent and robust 

estimate of the scale), the desired properties of the location estimate with known 

scale will be roughly preserved. However, it is not possible to obtain an exact 

minimax, since the loss of the translation invariance symmetry in the multi- 

parameter case does not enable extension of the parametrization of the nominal 

model throughout a convex uncertainty neighborhood, cf. [3, Section 11.1]. It 

should also be clear that the variational techniques of [3] are not applicable for 

finding the density that minimizes V{F ,T), even when the asymptotic variance of 

S is considered as a nuisance factor, due to the deep and implicit nonlinear coupling 

of Eq.(5.12) subject to Eqs.(5.11). 

iv) The simultaneous solution of Equations (5.10) is perhaps an unnecessary compli- 

cated. Simplified variants are the one step M-estimates . They are obtained by 

starting with some preliminary estimates r„'°' and Sj- \ and then solving Eq.(5.11a) 

approximately by applying Newton's method just  once . The following variant 
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emerged in the extensive "Princeton Monte-Carlo study " of Andrews et al. [35] as 

very robust, even for small sample sizes. The preliminary estimates are the median: 

^n (x) = med {xi }, and the median of the absolute deviations from it (MAD): 

5„(°'(x) = merf{ I Xi-T^y^)\ }/0.6745, where 0.6745=<l>-i(3/4) to get consistency 

at the Gaussian {x{x)=sign{ \ x \ -1), thus S'(°'(F)=F^^(3/4) for a symmetric den- 

sity from (5.11b)). The MAD is the limiting case (e-^1) of the minimax robust scale 

estimate, and its computation is simpler. Then, 

r„(^) is asymptotically (rz ^oo) equivalent to the full solution of Eq.(5.10a) TJ-'^\ 

provided the previously mentioned symmetry conditions are satisfied. Moreover, 

with these symmetry conditions, any one-step estimator with translation invariant 

and odd r„(o) : T„^'\x+c )=TJ~'\X)+C ,r W(-x)=-r„(o)(x)), will have the same IC 

(and hence identical asymptotic properties) as the full solution of the coupled equa- 

tions. Note that for the nominal Gaussian case the computation of (5.15) is of the 

same order of complexity as of the nonlinear detectors typical of the LORD 

approach (Section 1.3), provided TJ") and Sj-^^ are available after two orderings of 

the data (the denominator is just the number of normalized samples in [-k ,k ]). 

With this background , it seems natural to preserve the structure of the SSQME 

test, but with scale invariant location estimators and an adaptive threshold which is 

derived from the scale estimate. Thus we propose the following test: 

DECIDE       H,     zff      i?(x,y)   >   t„W{x,y) (5.16) 

where 

R{x,y)   J    [r„(^)(x)]2+[r„(^)(y)]2   ,   VK(x,y)    A    [5/)(x)]2-H[5;«)(y)]2      (5.17) 
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r„<^) is the one step M-estimator of Eq.(5.15) and 5„'°) is the M\D scale estimator. The 

structure of the test is shown in Fig. 5.2. 

Fig. 5.2   SSQME test with MAD preliminary scale estimate. 
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The asymptotic properties of the test are summarized in the following. They are 

valid for all simultaneous and one step M-estimators provided the symmetry properties 

that were mentioned before hold. 

Proposition 5.2 a) The test (5.16) is CFAR for any fixed density / GPQ with unk- 

nown (variable) a. b) With variable f , the changes in the asymptotic false-alarm proba- 

bility are governed only by the normalized variance of the location estimates : 

F'(F,rW) t F(F,r«)/(5(°)(F))2 , but not by the variance of the scale estimate, c) 

The asymptotic detection probability is given by the same expression as for a fixed 

threshold SSQME test: /?(F)=a(F)i/(i+^^^(^)) ( for a Rayleigh signal), where 

nA '^ 

is also not a function of the scale estimator variance. 

Proof 1) Both r„(^' and 5„(o' are scale equivariant: Sj^°\ax)=aS„^^\x), etc., from 

which a) follows immediately. Also, S'(°'(FJ = aS^°\F^^{}, hence we will omit the scale 

subscript on F for convenience. 

00 00 

2) The probability of acceptance of i/^ is given by jf^Y{w)dwJ fji{r)dr, since R and 
0 t. w 

W are asymptotically independent when the symmetry conditions of i) above are met. R 

is one sided exponentially distributed, with 

^o(^)   =   ^{S^'\F)fV'{F,T^'))     ,    E,{R)  =  Eo{R)[l+SNR]        (5.19) 

by straightforward calculation. Note that the definition of SNR is justified (by analogy 

to the classical case) as V {F ,T^^^) is also a invariant by its definition, as long as the 

scale and location estimates are also invariant. Hence the input noise variance affects 

SNR only through S'^°\F^)=aF^°\Fi). As W is the sum of the squares of two indepen- 

dent identically distributed Gaussian r.v.'s N{a,v^), it has a noncentrai x^ distribution 

with 2 degrees of freedom and noncentrality parameter X=2a^, c.f. [13]. Explicitly, 
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1   /   w+2a~ ■, r , a \/2w 
t„(u,)^^.M-^^^~)U^^^) (5,20) 

where IQ is the modified Bessel function of zeroth order. Here a^S^^F) and 

v=—V{F,S^^^) under HQ and under H^, as 5j°)(x+c )=5j°)(x). The desired probabili- 

ties are thus computed from; 

„ 00 

/'     -    '^^'^i^/-^|-"(i^-l^)l«^)^'"     '     -'^0 , «. (5,21, 

The evaluation of this integral is facilitated by 

00 

/exp(-a; )/o(2\/^ )c?3;      =     exp(y) (5.22) 
0 

which can be derived by a change of variables from the normalization of the Rician den- 

sity. The result is 

As a /Ei{R ) f^ n and v /Ei{R ) is not a function of n , in order to get a non-zero a as 

n-<-oo we must have t„=t /n. Thus when n-+oo the terms that contain V{F ,S^^\F)) 

through  V   cancel out and   lim   p^   =   exp(-«/F'(F, T^^') follows and proves b). The 
n —►00 

proof of c) is similar upon substitution of E^[R) from Eq.(5.19) into (5.23) and taking 

the limit as n —*-oo. 

Comments and interpretation 

l)Since the error probabilities are not functions of the variance of the scale estimator, 

S^ I should be chosen to achieve better and flatter consistency over P^ , and not accord- 

ing to its variability. 2) The false alarm probability with the preliminary estimate is 

parametrized by V'[F ,T^^>), which is roughly equal to the variance under the known 

scale case, if S^°\F)=1 and it does not change too much over PQ. Hence we have a simi- 
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lar situation as in Chapter 4, and the upper bound on the false alarm probability is 

approximately satisfied if the least favorable density q^ is chosen. While it does not 

seem possible to give an analytic characterization of the density that maximizes 

7'(/r_ j(i)) over the e-mixture family PQ as was discussed in iii) above, if the noise den- 

sity is restricted to a narrower family (e.g., Gauss-Gauss or Gauss-Laplace e- mixtures), 

the supremum of the variance can be found (at least numerically) and adjusted accord- 

ingly to obtain an upper bound on the a over the restricted family. 3)With that res- 

tricted maximization, an approximate upper bound on the detection probability will also 

be obtained as follows. Denote by PQ^ the restricted noise family. Since 

S^'^\F ,D )=F~\'i/A)/D (for the MAD estimator) changes over Por, its arbitrary normal- 

ization D   can be used as an optimization parameter. Let  V**{D)^ MaxV'{F ,T^^\D) 

and a!f=ex^{-t /'V**{D))>a[F ,D). Under the same approximation of Section 4.3 for 

sufficiently high desired probability of detection (/3^0.5), with substitution of SNR from 

Eq. (5.18): 

Hence the additional detectability loss from scale estimation relative to the worst case 

where a is known is characterized by the effective SNR loss 

y{'o,Q   ) 

and     D can     be     chosen     to     minimize     the     maximum     loss     over     PQ,     : 

D** = ArgMin{ Max L [F ,D )}. Hence, a (/?) is bounded from above (below) over the 

family, and the additional loss due to scale estimation is low if L [F** ,D **)«si. 

Figures 5.3a-5.3f show the results of such a numerical optimization over the Gauss- 

Gauss mixture family, vs. the r.m.s. power of the contamination c . In each figure the 

dashed lines are of F'(F ,r(^V^**, and the continuous lines are oi L{F ,D). One set of 

graphs in each figure corresponds to the optimization with respect to D , while the other 
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was obtained where D was taken to get consistency at the least-favorable density of the known a 

D* 

A:--In 
k 4(M/o(^: 

lAtl>. 1 
4(1-6) 

^- 1  + 2(1-6) 
4(1 - 6) 

(5.26) 

/o(^-)   ^      1 

k 4(1-6) 

The figures demonstrate that there is no additional loss (above that incurred from 

^{^Oilo)/^ ) from the scale estimation for e<0.2, that the loss is negligible (about 4%) for 

6^0.3, and it is quite small (about 26%,corresponding to 1 dB) for e^O.4. Even for the huge 

uncertainty 6=0.5 the loss is reasonable (50%) if c <20. For 6>0.5, it seems that L [F ,D **) 

is unbounded. This agrees with the "breakdown" point of the joint estimation, as evaluated by 

Huber [3, pp. 141-146]. Also, the loss difference between the optimal D ** and the normahzation 

D is quite small. As D ** >0.6745, the efficiency at the nominal Gaussian is somewhat 

sacrificed to obtain better performance over Pgr (compare with Table 5.1). Similar conclusions 

can be drawn from Figures 5.4a-5.4d which are valid for the Gauss-Laplace mixture family. When 

the nominal p.d.f. is Gaussian, the test of Eq.(5.17) can be simplified by utilizing a-trimmed esti- 

mators in place of the one step location estimator. In that case, it turns out that the agreement 

with the performance of the known scale is even closer, see [48] for the numerical data. 
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Fig. 5.3 Normalized variance V [F ,T^^'>)/V'* (dashed lines) and effective SNR loss 
L[F,D) of SSQME test with a preliminary scale estimate. Gauss- Gauss mixture, 
c"^contamination variance. D* - scale normalization of the known-cr least favorable 
density, D ** - optimal scale normalization, a) e^O.Ol . 
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Fig. 5.3 (continued) 
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Fig. 5.4 Normalized variance V {F,T^-^)/V" (dashed lines) and effective SNR loss 
L[F,D) of SSQN'IE test with a preliminary scale estimate. Gauss- Laplace mixture, 
c "=contamination variance. D' - scale normalization of the known-o- least favorable 
density, D **- optimal scale normalization. 
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Finally, we note that the undesired result where the false alarm probability still 

depends on / ePo (unlike the SW-SSQME version) is a consequence of estimating the 

scale of the input samples and utilizing it for the threshold, instead of direct estimation 

of the variance of the location estimator. (Recall that in the classical normal case the 

variance of the sample mean estimator differs only by a factor of n from the variance of 

the input samples). This might be resolved with additional implementation complexity, 

by taking the adaptive threshold to be proportional toF^(x)+F^(y), where 

F^(x)  = 
n nh      ^    5„(«)(x)      ''^"^^^'^" (5.27) 

and the IC is given by Eq. (5.13). Under the previously stated regularity and symmetry 

conditions this estimate of V{F J^^'') is consistent. Thus it is reasonable to assume that 

V'{F ,T^ I) will cancel out from the error probabilities. However, the error probabilities 

with this estimate are analytically intractable even when n-^oo (see also [3], Section 

6.8). >   - •.    , , 

We feel that this additional complication is probably unnecessary, as is evident 

from Figs. 5.3-5.4. Moreover, Monte-Carlo finite sample simulation results indicate that 

when the test of Eq.(5.16) is implemented with the breakpoints corresponding to the 

density q^ , both error probabilities did not deviate in any noticeable way from the 

known cr case (i.e., when (5.12) is computed with S[F)=1), when €<0.2 and n >48. 
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5.3 Unknown Signal Frequency and Implementation Complexity 

In radar-sonar detection, the frequency of the signal is often unknown, since it is 

proportional to the target radial velocity by the Doppler shift effect. In the Gaussian 

noise case, the problem is commonly solved by employing a bank of M contiguous 

coherent envelope tests , each of the form of Eq.(2.4), where the i'* is matched (by 

baseband conversion) to a Doppler shift of if^/M (/, = 1/T ^pulse repetition fre- 

quency). If the Doppler shift is spread uniformly over [0,/^], almost optimal performance 

over this range is obtained by implementing the contiguous bank with a weighted FFT 

processor of length n , as the envelope of the FFT filters outputs is almost flat.' This will 

serve in the following as a basis for comparison of implementation complexity of the 

various robust tests. 

In a similar manner, robust tests for unknown frequency can be constructed as a 

bank of M contiguous SSQME tests. Specifically, in the i-"" channel, k =0,1,...M-1, the 

input observables of Eqs.(2.5-2.6) are transformed according to 

/,• {k )=Re [{xi + JVi )exp(-y 2mk jM)]   ,   g,- (i )=/m [(a:,- + iy,- )exp(-y 2mk /M)] 

and then M parallel SSQME tests are performed on {I(A; ),Q(A-)}, see Fig. A. In this way, 

for the M discrete frequencies kf^/M in the uncertainty range [0,/,], the performance 

will be optimal as before, with some loss for straddling frequencies. The question now 

arises if this loss is comparable to that of the FFT processor when M^n . At first glance 

we might suspect that it would be larger due to the nonlinear processing, but it turns to 

be identical at least for large sample sizes. 

Proposition 5.3 Let the frequency shift of the signal be /^=A/r/rt ( A measures 

the frequency deviation from the nearest filter, normalized by the filter bandwidth) and 

let n —»-oo. Then, the detection probability of the various SSQ\'IE tests is given by the 

same expressions as for A = 0,   where the effective SNR is attenuated by G(A) which is 

'Flatness of about 1 dB is achieved with Hamming weighting. 
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identical to that of the FFT processor: 

r     .     ^ 12 
(5.28) 

sin(;rA) 
;rA 

G(A)     = 

The proposition is proved in appendix D; the key steps are showing asymptotic nor- 

mality for M-estimators of a sequence of r.v.'s with unequal means, and that the 1 and Q 

estimators are asymptotically jointly Gaussian and independent, even though /,■ is in 

general not independent of Q,-. The implications should be clear: not only that it is not 

necessary to construct a bank of more than n contiguous SSQME tests, but it is also 

possible to apply the same weighting techniques that are employed with the FFT proces- 

sor to get a flatter performance over the frequency range (at a price of reduced resolu- 

tion and reduced SNR at fd=0)-   (See appendix D for the details.) 

It was not possible to prove a similar result for the test implemented with the a- 

trimmed means. One of the difficulties is that, apparently, there is not any general result 

in the statistical literature on the distribution of L-statistics when the samples are not 

identically distributed. However, the simulation results of Chap 5.4 indicate that the 

above proposition is essentially valid. To support it, Fig. B depicts the frequency 

response G„(A), when no noise is present; this can be viewed as an approximation for 

SNR—>-oo. G'a(A) was numerically computed as the average (with respect to the uniform 

phase) of the test statistic 

G,(A) = E^T^^ix, y; <f>, A) + Q^\x ,y; <f>, A)} 

noise = 0 

with  n =16 (the dependency on  n   was negligible above it). It is seen  that  the SNR 

attenuation decreases with more trimming, and is always less than that of the linear 

quadrature detector. From the simulations results, the presence of noise seems to com- 

pensate for this superior behavior. 

Implementation complexity 

The  major  increase   in   complexity  stems  from   the  nonhnear   processing  of  the 
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SSQME test. Thus, the number of operations required for a single frequency must be 

multiplied by n resulting in O(ra^) for the full range, compared to n logra for the linear 

FFT processor (in the following, logn ^logQw). It does not seem possible to perform some 

of the nonlinear operations before  the n frequency conversions. 

For purposes of simplicity, we assume that multiplications, additions and comparis- 

ons are equally costly. Hence, the FFT processor requires O (5n logn +4n ) real operations. 

The SSQME test for the nominally Gaussian noise is based on a-trimmed means. If ord- 

ering the data is done by the QUICKSORT algorithm [39], the expected number of 

operations for an i.i.d. sequence is O(nlogn) ^. Hence a- trimming requires 

O {n\ogn+ c {a),l<c(a)<n. With it available, the MAD scale estimator requires 

0(7110571+2/1) operations in addition, and the 1-step estimator T'^' for the non-Gaussian 

nominal density needs O(lln) more, assuming that the evaluation of a nonlinear func- 

tion is done by interpolation between two stored values. With these, the order of com- 

plexity for the various tests of the previous section is easily obtained by counting. For 

the SW version we do not count the operations in the adjacent M reference cells, as the 

SW is performed by sequentially repeating the algorithm on adjacent spatial cells and it 

is only required to keep in memory the outcomes of operations that have already been 

performed. Table 5.4 summarizes the order of the number of operations. The last entry 

belongs to the narrow-band Wilcoxon nonparametric test [40] which is a candidate for 

comparison with the robust tests. The test statistic for a single frequency is 

RNBw{^,y] = it^^i'iWM? + [tR^iy<W{y<)? (5.29) 
»—1 1=1 

where i?^(a:,-) is the rank of | a:,- | in | a;i | , | zg | ,.... | a:„ ] , and f (x,-) is the unity step 

function. The test has the same order of complexity as the SSQME test, which substan- 

tially outperforms it as will be shown in the next section. 

QUICKSORT is a random algorithm, it can require up toO (n^) operations. 



Type of Test Order of Complexity 

FFT processor 5n logn  + 4n 

SW-SSQME for nominal Gaussian noise 2nHogn  + 2n(c(a)+l) 

SSQME with preliminary scale estimate 
for nominal Gaussian noise 

4n^(logn  + 1) -1- 2n{c (a)+2) 

SW-SSQME for nominal non-Gaussian 
noise 

4w2(logn  + 12) + 8n 

SSQME with preliminary scale estimate 
for nominal non-Gaussian noise 

4w2(logn  + 12) + lln 

Wilcoxon NB 2n%\ogn  -H 3) + 4n 

Table 5.4o Order of complexity for various tests of narrow-band input of length n. 

As an example for the order of the actual required processing rates, consider the fol- 

lowing radar case. With a SW test and a^O.25, the number of operations per frequency 

channel and range bin is Of (n )=n (21ogn +7)+4. The total number for the entire range 

domain is Oj [n)T/T, where r is the width of the range bin and T=i/f^ is the pulse 

repetition interval. The processing rate per frequency channel is the above divided by 

the dwell time at each spatial direction, nT. Thus, it equals Of (n )/(n r). Table 5.4b 

compares the processing rates, in million operations per second (MOPS), for r =1^5 

(corresponding to range resolution of 150 meters), for the robust SW and FFT detectors. 

The robust detector requires a factor of 10 to 40 more than that required by the FFT 

processor, and the actual rates are higher than possible with current technology. How- 

ever, they are within the projected capability of VLSI and VHSIC technologies for the 

near future. Moreover, the "bank of Doppler test" structure is convenient for parallel 

implementation, thus only the numbers at the left part of the table need be considered. 

n 

MOPS 
robust 

per channel 

FFT 

total 
robust 

MOPS 
FFT 

16 15.2 1.50 244 24 

32 17.1 .91 548 29.1 

64 19.1 .53 1220 33.9 

Table 5.4b Processing rates for a radar example. 
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Figure B   Frequency response of the SW test with a-trimmed estimators. 
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5.4 Finite Sample Simulation Results 

The asymptotic approach to robust statistical procedures is an unavoidable neces- 

sity, as the n ^oo assumption allows one to invoke the central limit theorem in order to 

obtain explicit functionals which parametrize the performance of the procedure. Thus, 

optimization by some criterion becomes possible. Although asymptotically one could 

find true optimal procedures by estimating the underlying distribution, this usually 

requires a prohibitive number of samples [49]. Thus, the central reason for the asymp- 

totic formulation is the hope that robust estimation and testing procedures will approach 

their asymptotic behavior quickly. The "Princeton Monte Carlo Study" of Andrews et 

al. [35] showed that this is indeed the case for the variance of M and other robust esti- 

mators of location.   For detection, we need also to demonstrate the tail behavior. 

In most communication engineering applications, n will be quite small. This is true 

particularly for radar - sonar systems, where such considerations as the desired non 

-ambiguous detection range, angular resolution and minimization of the required time to 

search the detection spatial sector, call for decreasing n . Moreover, we have seen time 

and again through this work that detectability of coherent signals is governed (at least 

asymptotically) by the integrated SNR nA'. In active systems, this product is propor- 

tional to the average transmitter power, which usually is the fundamental constraint 

rather than the peak power A ". Therefore, at a given time period the same detectabihty 

can be maintained by increasing A and reducing n while keeping nA " constant, thus 

achieving the other important systems objectives. As a result of that, most radar sys- 

tems are designed with n ^0(10-50) or even smaller for long range systems. Conse- 

quently, the usefulness of procedures resulting from asymptotic analysis remains ques- 

tionable without small - sample performance analysis. 

Unfortunately, analytic tools for studying finite sample performance are not avail- 

able. Results in the spirit of the Berry-Essen theorem [37], which bounds the deviation 

from Gaussianity of the distribution of the sample mean estimator are non-existent for 
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M-estimators. This is so because it is not possible to obtain an analytic expression for 

the finite sample moments. (Notice that its asymptotic variance was derived indirectly 

through the convergence of its distribution). We must resort to either numerical or 

simulation studies which do not analytically exhibit the rate of convergence. 

For M-estimators with a monotone nonlinearity /, the distribution can be com- 

puted from an n-fold numerical convolution since Prob{A<a}^ 

Fro6 {^/(x,-o )<0}. For our SSQME test more integrations are required since 

R ^A^ +Ay , and A and (j) have to be averaged out. Field and Hampell [42] recently 

showed how to alleviate the enormous amount of computations by their so called "small 

sample asymptotics" technique, which is closely related to Daniel's [43] saddlepoint 

approximation. Though this technique was shown to be very accurate down to sample 

sizes of 3, even in the extreme tails, it is still numerical in nature and involves a substan- 

tial programming effort. Therefore we have not proceeded in this direction but per- 

formed instead a Monte-Carlo study - programming is relatively straightforward and 

flexible, and the empirical distribution estimates are known to be unbiased and converge 

to the true distribution with a large number of repetitions. 

Heuristically, the SSQME tests based on robust amplitude estimation should con- 

verge at a faster rate than the locally optimal robust detector (Section 4.4) based on 

weak signal assumptions. The latter incorporates a hard "non tracking" nonlinearity; 

the distribution of the test statistic has finite support (when n is finite) with a point 

mass at the upper end of the interval. In contrast, the M-estimator can take any value 

on R ^ and its distribution will be smoother and hence converge faster to Gaussian. This 

is most significant under Hi when the distribution of the LORD test statistic will be 

mostly concentrated around the boundary of the intervals for large SNR. 

When adopting the asymptotic theory testing structure for finite sample size, the 

amount of trimming or limiting must be increased if very small Fy^ is desired, since we 

are dealing with the tail of the distribution where deviations from theory are larger. This 
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is explained more precisely as follows. Let Af. represent the event that max { number of 

outliers in the I observations, number of outliers in the Q observations } = ifc^Since these 

events are mutually exclusive and their union is the certain event we can write 

(5.30) 
2\na\ 

Pfa--Pr{R>t}=EPr{R>t \A,}P{A,)+      J]      Pr {R >t \A,}P{A,) 
k=0 k=2[na\ + l 

Thus, a lower bound for Pj-^   is the second term.   In it, the number of outliers exceeds' 

the trimming capability of either estimator; hence, if t  is fixed according to asymptotic 

theory     Pr {R >t  \ A^}     will     be     large     and     close     to     1,     and     approximately 

Pfa—      YJ      P{^k)- Assuming that the contaminated samples come from a switching 
k>2[na\ + l 

model,  the  probability  of having  k   outliers out of n   in  either channel  is binomial: 

7 I (1-e)"     e   , and due to independence of the quadrature samples 

P{A,) = P,' + 2P,''J:PI 
1=0 

(5.31) 

The following table exhibits this approximation for n^l6 and e^O.l. With the asymp- 

totically optimal a^O.164, Pf^ can not be smaller than roughly 10"'^, while a=0.27 is 

sufficient for 10"^; simulation results have validated this approximation. 

a .125 .1875 .25 .3125 .375 
k^=2\na]+l 5 7 9 11 13 

k=k^ 
3.37 10-- 1.01 10-^ 1.18-10-^ 5.4M0-* 8.36-10-^1 

Several versions of scale-invariant detectors of Section 5.2 were studied,  for the 

nominally Gaussian case. They will be denoted Dl - D5 as follows: 

(Dl)   SW-SSQME test of Eq.(5.5) based on a- trimmed estimators with the number of 

reference cells M^4. 

(D2)   like Dl but M—*oo (i.e.,the estimation of the variance of the test statistic con- 



verges to the true value). For that, the reference statistics W{u,v) of the Dl simu- 

lation was accumulated over all runs to produce the adaptive threshold. Thus, a 

huge saving was possible. 

(D3) SW-SSQME test with a "one-step" location estimators of Eq.(5.15) based on the 

MAD scale estimate; its normalization factor D^O.632 was adjusted to get (empiri- 

cally) consistency of the scale estimator ES (x)^l at the Gaussian (this value is 

somewhat lower than predicted from the asymptotic theory ). The nonlinearity was 

the soft limiter / [x ,-k ,k ). 

(D4) IS-SSQME test of Eqs. (5.16)-(5.17) - no reference cells - based on the same location 

and scale estimators of D3 . 

(D5) SW version of the LORD from Section 4.4 (obtained from weak signal assumptions 

by replacing the M - estimators with the nonlinearity-integrator of Eq. (4.29)), 

M-+00. 

For D1-D4, both a and k were adjusted to obtain better false-alarm control as discussed 

before; for D5 we chose k as the optimal for the given e from the asymptotic theory. 

For each test, two simulation programs were built. The first is for HQ and its out- 

put are graphs of the false alarm probability vs. the normalized threshold, as well as the 

first two moments of the location and scale estimators. The second program is for Hi. 

It simulates the detection probability as a function of the SNR for several levels of the 

false alarm probability and for a Swerling I target model, i.e., coherent narrowband sig- 

nal with Rayleigh distributed amplitude and uniform phase (see Section 4.3, case a). In 

each of the simulations, the test was subjected to four different noise p.d.f.'s from an e- 

mixture family where the nominal is normal Gaussian: 

(/i)   «=o 

(/ 2)    ^= 0-1   ^^'^ ^^° point masses at ±15 

if 3)    ^= 0-1 ^^^ ^ Gaussian contamination with variance c"^100 
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(/ 4)    e^O.Ol   and a Gaussian contamination with c^^900 

In the sequel, we shall use these numbers to identify the situation. The input variances 

are thus 1, 23.4, 10.9 and 9.99 respectively - all £7^0 cases represent large, heavy tailed 

contaminations and would have resulted in a substantial degradation of performance if 

the unrobustified envelope detector was employed (see Section 2.2). The e- mixture r.v.'s 

were generated from a switching device: at each step, a normal r.v y,- was generated 

together with a binomial r.v s, that is equal to 1 with probability e; a;,- =2/, if s,-7^1 

and x,-== c-T/,- (or i,-^±15 with probability 0.5 for f o) otherwise. Almost all simula- 

tions were for n=16. 

Table 5.5 displays the Monte- Carlo variances of the a- trimmed estimator for vari- 

ous a's. For comparison, from the asymptotic theory at the least-favorable p.d.f. 

F*(e=0.1) =1.49,        and        for        Q;=0.225 we        computed        from        Eq.(5.3) 

F(1)=1.17,F(2)=1.51, F(3)=1.46, F(4)=1.2. This good correspondence between 

asymptotic theory and finite sample simulation (for n^20) was observed before by 

Andrews et. al. [35]. The asymptotically optimal trimming ratio is Q;(e=0.1)= 0.164; as 

was discussed before it is necessary to apply more trimming with small sample size when 

very small false alarm probabilities are desired. The simulations indicated that 

o;^0.225 to 0.3 is sufficient; the table shows that except for / ^ for this a range the vari- 

ances are roughly as those for a = 0.164 (or even smaller). The results suggest that the 

detectability loss compared to theory is small. This has been verified from the H^ simu- 

lation results, which will be presented below. Similar conclusions can be drawn from 

Table 5.6, which is for the "one-step" estimator; here the asymptotically optimal limit- 

ing is k{e=0.l) = 1.14, and very small losses ( if any ) are incurred by taking ^=0.75. 
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a VU,) ^(/2) vu,) V{f,) 
0.164 1.09 1.43 1.60 1.13 
0.225 1.15 1.34 1.53 1.18 
0.25 1.17 1.35 1.51 1.20 
0.3 1.21 1.41 1.55 1.25 
0.4 1.36 1.56 1.69 1.39 
0.5 1.47 1.68 1.81 1.50 

Table 5.5 Monte-Carlo variances of the a- trimmed estimator.   n^l6, 20,000 runs. 

k V{f,) V{f.^ V{Iz) V{f,) 

1.14 1.08 1.29 1.53 1.12 
0.9 1.13 1.31 1.51 1.16 
0.75 1.16 1.34 1.50 1.24 
0.5 1.29 1.46 1.62 1.32 
0.3 1.41 1.60 1.74 1.42 

Table 5.6 Monte-Carlo variances of the "one - step" estimator with MAD scale estima- 
tor. n=16, 20,000 runs. 

Probability of false alarm curves are shown in Figures 5.5 - 5.16. In all these 

figures, the smooth curves marked "T" are computed from the asymptotic theory - 

Eqs.(5.6) and (5.23), and the numbered curves are the simulation results for the densities 

/ i~ / 4- Fig. 5.5 corresponds to Dl and 5.6 to D2, with a=0.165. We see clearly that 

here a is too large, since for the more contaminated cases Pj^ is much higher than 

desired. This problem is solved by taking a^O.225 as can be seen from Figs. 5.7-5.8. In 

the first one, the Monte-Carlo curves are all remarkably close to the theoretic curve, 

within the range where the simulation results are reliable \ Pj^ '^A/n^ =2-10~*. The 

test is clearly CFAR, for very different noise p.d.f.'s. 

In Figure 5.8 Pr^  is even somewhat smaller than the theoretic, (this means that the dis- 

tribution of the test statistic R  has shorter tails compared to the one sided exponential). 

'       The     empirical     distribution for     n,      repetition     of     the     Monte-Carlo     experiment 
F„ (z )=number{x,->x l/n,,    is a    binomial    r.v.    with    mean    =1-F(z)    and    variance 
=-F[x)[l-F[x))/n,.    Therefore, for    P;^«l,for    ^^07-(P; J/P;, <0.5    one    obtains 
P;,>4/n,. 
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Thus, if the threshold is fixed according to the asymptotic theory, Pj^ is bounded from 

above as desired. The same is valid for a=O.Z as can be seen from Figs. 5.9-10. The 

curves for D3 are shown in Figs. 5.11-12; in the first one, the limiter breakpoint is 

A; =1.14 according to the asymptotic theory - it is again seen that the limiting is not 

"hard" enough, as Pf^ for / 3 is higher than the theoretic bound when Pj^ <0.01. This 

problem is corrected by taking fc=0.75 as can be seen from Fig. 5.12. 

Results for D4 are displayed in Figs. 5.13-5.14; notice the two sets of curves in Fig. 

5.13: the first is of logPro6 {i? (x,y)>(i/n ) FMK(x,y)} where V*=1.49, which should 

approach a straight line when n —»-oo according to proposition 5.2. In the second case the 

scale is contracted by taking V* ^Z. Here asymptotic theory is no longer valid: the 

curves are not linear and for achieving small Pf^'s higher threshold settings are 

required. These higher settings, in turn, would cause higher detectability losses. This 

deviation from asymptotic theory is not surprising, and is equivalent to the behavior of 

the "Quadrature t-test," which is the maximum likelihood test for a coherent nar- 

rowband signal in Gaussian noise of unknown variance 

H 

{-E ^i? + i-E mf   <'   -in^i-^f + Uyi-yf] (5.32) n n Ha     n 

For small n , the right hand side cannot be approximated by a Gaussian distribution (it 

is chi-squared for all n ), and also the dependency between the right and left sides of Eq. 

(5.29) cannot be neglected as we did in proving Proposition 5.2. In Fig. 5.14 n was 

increased to 48, in order to check convergence. It is evident that the curves almost con- 

verge to asymptotic theory, although some curvature is still noticed. 

Finally, Fig. 5.15 is for the LORD test D5. Here, as in Fig. 5.8, a tendency for 

shorter tails is observed. This could be heuristically described by the hard limiting that 

restricts the distribution of the test statistic to have a finite support. 

Dramatic improvement in false alarms control over the unrobustified SW detector 

Eq. (2.8) is evident when comparing the previous figures with Fig. 5.16. When it operates 
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in a Gauss-Gauss (e=0.1, c =10 ) noise, Fy^ is intolerably increased from the design 

10"^ to about 0.1 when M =4, and from 10~^ to 2-10"'* when M—>-oo. Compare also Fig. 

2.5 for €=0.01. Thus we can confidently conclude that the various SW-SSQME tests 

essentially maintain CFAR according to the asymptotic theory of Section 5.2 even for n 

as small as 16 with Pf^ down to (at least) 10""*. For the test without reference samples 

D4, n is not much larger than 48. Based on these curves, the detection thresholds for 

the Hi simulation were simply taken from the smooth theoretical curves, and extrapo- 

lated from them for Fy^^lO". Future work could utilize reduced variance sampling 

techniques such as "importance sampling "[44] to validate this extrapolation. 

Probability of detection curves for Dl, D2 and D5 are shown in Figs. 5.17-27. Here 

5000 repetitions are sufficient to get Var^^-{Pi)/P^i <0.l for ,02<Fi <0.98. The 

abscissa is the effective integrated SNR =nE {A')/a~ where cr^ is the variance of the 

nominal Gaussian p.d.f. The known signal frequency case is depicted in Figs. 5.17-20. 

The Monte-Carlo curves are clearly bounded from the left by the computed P^ for the 

unrobustified SW detector when e=0, and from the right by the maximin lower bound 

computed from asymptotic theory, Eq. (5.6), with V* of the least-favorable p.d.f. / *. 

Here again the fit between asymptotic theory and small sample performance is striking: 

the curves for / ^-f 4 are ranked exacthj according to the estimation variances of Table 

5.5, and the simulated P^ values generally differ by no more than a few percent when 

the simulation variances are substituted in Eq. (5.6) or (5.23). Equivalently, the horizon- 

tal differences between curves are roughly the dB values of the variances from Table 5.5. 

We also note that the difl"erence between Q;=0.225 and a^O.3 is very small, again 

according to the variance difference. 

In contrast with the above results, the unrobustified SW detector of Eq.(2.8) was 

found to suffer substantial detectability losses. They were almost identical to the 

increased input variances of / 2 - / 4, with respect to / 1. 
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' Some non-parametric schemes were developed for detection of narrowband signals 

in unknown noise; the narrowband Wilcoxon detector, Eq.(5.29), was proposed by Car- 

lyle and its Monte-Carlo performance in purely Gaussian noise was studied by Hansen 

[40]. It was found that the SNR losses compared to the UMP detector for n^l6 and 

Pfci ^10"® are 5 and 14 dB, for P^ =0.b and 0.9, respectively (smaller losses are incurred 

for larger n ) - compared to merely 0.6 db for D2 in Fig. 5.18 ! Furthermore, the perfor- 

mance in non-Gaussian noise has not been studied. 

The performance of the detector without reference samples, D4 with n = 16, is 

shown in Fig. 5.20. Although convergence to the asymptotic theory is not yet reached 

(in accordance with the higher required threshold values - recall Fig. 5.13), the detector 

is clearly robust. This is evident from the small differences between the curves for 

/ 1 - / 4. By comparison with Fig. 5.18, the SNR losses are roughly 1.8 and 5.8 dB for 

Pjn = 10"^ and 10"^, respectively, independent of the P^ . However, when comparing it 

with the SW-SSQME test Dl of only 4 reference channels, D4 outperforms it by roughly 

1 and 3.4 dB, for Py^, = 10"^ and 10"^, respectively. By virtue of the shift invariance of 

the one-step location estimator, if convergence to Gaussianity is reached under HQ, the 

performance under Hi will agree with the asymptotic prediction. Thus, when n > 50 

D4 would hardly suffer any detectability losses compared to the UMP detector for the 

least favorable noise p.d.f. 

In contrast to the excellent performance of the structures proposed in this work, 

Fig. 5.21 shows that while the LORD test D5 performs roughly the same for P^^^^IO"^, 

it is inferior for Py^^lO"^; its SNR should be higher by 4.6 dB to achieve Pj=0.9 at 

/ 3. This can be simply explained: when the SNR is sufficiently high for high P^ , the 

"non-tracking" hard limiter of Eq. (4.29) prevents the distribution of R from tilting 

towards higher values. Also, asymptotic theory does not properly describe its behavior 

at the most interesting zone P^—*-l. (Recall that SNR —>-0 was necessary for the deriva- 

tion of its asymptotic distribution, but not for the tests which are based on true robust 
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estimation of the arbitrary amplitude). Notice also that the LORD test D5 is not scale 

invariant, and the simulation results for it are valid only when the variance of the nomi- 

nal equal unity. 

The performance with unmatched signal frequency when a bank of n contiguous 

SW-SSQME tests is utilized for unknown frequency (Section 5.3 ), are depicted in Figs. 

5.22-24 where the normalized deviation A/ An Af ^ / f ^=0.25, and in Figs. 5.25-27 for 

A/ =0.5 (halfway between the central frequency of adjacent tests ). The mismatch loss 

is almost indistinguishable from that of Proposition 5.3 - i.e., the same loss incurred by 

the FFT processor for a frequency unmatched signal in pure Gaussian noise. While this 

loss is reasonable for Dl and D2, 0.91 dB and 3.9 dB for A/ =0.25 and 0.5 respectively, 

the weak signal locally - optimal test D5 totally breaks down under this situation, as 

demonstrated by Figs. 5.24 and 5.27. We note that this loss for D^ and D2 can be 

reduced by weighting the input samples. (See appendix D.) 

Another interesting conclusion can be drawn. In many practical cases, the noise 

p.d.f. is variance constrained, as it is proportional to the total (nominal plus contaminat- 

ing components) noise power. This is true in particular for the clutter (reverberation) 

environment, where the noise power is proportional to the radar (sonar) transmitted 

power. A question now arises as to which variance constrained noise p.d.f. constitutes 

the worst detection environment. Consider for example Fig. 5.18 and / 3 for which the 

detector D2 is essentially optimal. However, the variance of / 3 is 10.9. Consequently, in 

a Gaussian noise environment of equal power (7^=10.9, the UMP detector would perform 

worse by 10.9 -1.5 = 9.4 dB than the detector D2 ! This turns to be true in general. In 

[45], we show that the Gaussian is the least favorable variance constrained p.d.f. for 

detection of lowpass as well as narrowband coherent signals with random parameters. 
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Fig. 5.5 False alarm probability. Test - Dl , Q;==.164. 
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Fig. 5.6 False alarm probability. Test - D2 , a=.164. 
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Fig. 5.7 False alarm probability. Test - Dl , a=.225. 
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Fig. 5.9 False alarm probability. Test - Dl , a^.3. 
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Fig. 5.10 False alarm probability. Test - D2 , a=.3. 
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Fig. 5.11 False alarm probability. Test - D3 , K=1.14. 
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Fig. 5.12 False alarm probability. Test - D3 , K=.75. 
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Fig. 5.13 False alarm probability. Test - D4 , K=.85, n=16. 
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Fig. 5.14 False alarm probability. Test - D4 , K=.9, n=48. 
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Fig. 5.15 False alarm probability. Test - D5 , K=1.14. 
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Fig. 5.16 False alarm probability. Unrobustified envelope detector, Gauss-Gauss mix- 

ture (e=0.1,c=10). 
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Fig. 5.17 Detection probability. Test - Dl, Q;=.225,A/ =0 
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Fig. 5.19 Detection probability. Test - Dl, a=.3,Af =0 
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Fig. 5.20 Detection probability. Test - D4, n = 16, A/ =0 

1-STEP   DETECTOR, KLIM=0.5'5 

(v/iTHour /?£ft/?£>/c£  SAMpils)^ 

NO,    M.C.    RUNS=   2000 

N=   16 

■RD-QD 5.00 10.00 15.00 20.00 
INTEGRATED SNR IN DB 

25.00 



103 - 

Fig. 5.21 Detection probability. Test - D5, K = 1.14, A/ =0 
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Fig. 5.22 Detection probability. Test - Dl, a=.225,A/ =.25 
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Fig. 5.23 Detection probability. Test - D2, Q!=.225,A/ =.25 
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Fig. 5.24 Detection probability. Test - D5, i^=1.14,A/ =.25 
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Fig. 5.25 Detection probability. Test - Dl, a=.225,A/ =.5 
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Fig. 5.26 Detection probability. Test - D2, Q;=.225,A/ =.5 

.00 5.00 10.00 15.00 20.00 
INTEGRTTED SNR IN DB 



106 

Fig. 5.27 Detection probability. Test - D5, A:=1.14,A/ =.5 

"u. 00 S.OO 10.00 15.00 20.00 
INTEGRATED SNR IN DB 

25.00     30.00 



- 107 - 

6. ROBUST RANK TESTS FOR NARROWBAND FADING SIGNALS 

6.1   Introduction 

6.1.1 - Motivation 

On initial reflection, it seems somewiiat contradictory to investigate robust rank 

tests. Since rank tests are generally distribution-free (DF) under the null hypothesis, it is 

reasonable to ask if their detection performance are not already inherently insensitive to 

the distribution shape. It turns out that this is indeed the case, but we have not found 

any previous work pointing to that conclusion. Moreover, it will be shown that by a 

slight increase in complexity, we can also have maximin optimal performance. Other rea- 

sons that motivate us to study tests based on rank statistics are the following. 

i) It is possible to design rank tests that attain the DF-CFAR property for all n , 

under relatively weak assumptions. In particular, some of the tests that will be studied 

in this chapter only require that the observations be i.i.d. under the null hypothesis.^ By 

way of contrast, the various robust SSQME tests of Chapters 4-5 are only asymptoti- 

cally CFAR. Though the simulation results, Section 5.4, showed very good CFAR pro- 

perty for n = 16, this is not true for all n , for all desired Pf^ level, and for all possible 

noise contaminations. For instance, in order to achieve Pf^ < 10"'* with contaminations 

of e Ri 0.5, it was found that trimming levels of a -> 0.5 are required, i.e., the detector is 

based on median estimators. This leads to large variances as indicated by the asymp- 

totic formula, Eq. (5.3). The variances are even larger for small n ; hence, P^ is further 

degraded. 

ii) With the SW-SSQME tests, Section 5.2a, the adaptive threshold estimator, 

VK(u, v) of Eq. (5.5), does not efficiently utilize the total number of available noise refer- 

ence samples, nM.   Actually, the ensuing detectability loss is a function of M and not of 

This is probably the most important feature of target detection systems (radar, sonar), 
where initiation of some action process based on false-alarm might bear disastrous results. 
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nM (see Eq. (5.6)), and is quite large for small M. In a non-homogeneous environment 

(e.g., clutter "edges" and multiple targets, cf. [20]), M must be kept small in order not 

to violate the assumption that the reference samples are identically distributed as the 

test cell samples. On the other hand, the two-sample rank tests that we study use the 

reference samples more efficiently. Furthermore, it is even possible, with proper choice 

of the modulating signal, to obtain the optimal performance of the locally most powerful 

(LMP) detector when the noise p.d.f. is known, and to design for a maximin robust rank 

detector (in terms of F^) over a mixture class. 

iii) With the scale invariant IS-SSQME tests which are not based on reference 

samples, Section 5.2b, it was not possible to obtain exact CFAR and maximin P^ 

though they were numerically shown to be robust over wide parametric families. More- 

over, although these tests suffer a rather small detectability loss at the least favorable 

p.d.f., the simulation study has shown a slow convergence to asymptotic theory. (Intui- 

tively, the reason for that is the necessity to estimate two parameters from the data set). 

The rank tests which are proposed and studied in this chapter, essentially avoid the 

above mentioned problems. On the negative side, some of the tests necessitate increased 

storage and computational loads. Also, the various SSQME tests are all based on shift 

invariant estimators, and hence once the convergence to the asymptotic theory has been 

practically reached under HQ, the detection performance under Hi follows immediately 

from the asymptotic results, for all signal levels. This is clearly exhibited by the simula- 

tion results. Section 5.4. By way of contrast, the proposed rank statistics are not shift 

invariant, and our asymptotic derivations are valid for weak signals in the nonsingular 

detection sense: na^ —+ c . While most of the rank statistics that we consider could be 

replaced by shift invariant rank estimators, see [3], without affecting the efficacy • 

mance, this will again necessitate 

" The adaptive threshold W[u, v) could be robustified against interfering signals and clutter edges 
in a manner similar to that of our previous work [20], and similar improvements can be anticipated. 
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performance, this will again necessitate robustly estimating their variance.   Thus, we will 

at most obtain the performance of the SSQME tests, but with increased complexity. 

6.1.2 - Preview 

In Section 6.2, the available observations structure for typical radar/sonar applica- 

tions is presented, and some rank tests are classified according to the ranking structure. 

One-sample tests do not require noise-reference observations, while two-sample tests are 

based on ranking the entire data-set: the observations obtained from the test cell under 

question, plus these which originate from a noise reference. In single-sweep tests, each 

observation ("sweep") from the test cell, is ranked with respect to its contemporary 

noise reference observations, and the final test statistics is a function of the single sweep 

ranks, accumulated over the illuminating pulse train period. The various rank tests thus 

represent different levels of performance vs. complexity. Previous relevant results on 

rank statistics are also summarized. 

In Section 6.3, various asymptotically optimal tests for detection of fading nar- 

rowband bandpass signals are derived, when the noise p.d.f. is known only in shape, i.e., 

any shift and scale transformations do not affect their performance. The model is given 

by the p.d.f. under Hi 

/ (x, y) =   n   / [xi - aSiAcosO) f {y^ - as^ A smO)      U      f {xi) / {y^)    (6.1.1) 
!=1 i=n+l 

where A is the random signal amplitude, normalized such that a^ represents the unk- 

nown input SNR. {sj- } is a known signal sequence, and 9 is the random phase. The 

samples are gathered such that the test cell samples are in the first n places. M 

represents the number of noise-reference vectors, so there are nM noise alone observa- 

tions. The X  and y samples are ranked separately, such that i?^   is the  rank of x,- 

among   {xj},-^!,   N = n{M + l),   and   likewise   i?^   ,   (for   a   one-sample   proble m, 

M = 0).   The class of tests that we study is of the form 

N ' 2 N 

E c. flyv (-ffyvi) + S  Cia^{R,^i 
!=1 1=1 

\      > ' 
<    h (6.1.2) 
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It is shown that, for arbitrary distribution of A , this quadrature structure asymptoti- 

cally maximizes P^ for the model (6.1.1); that for optimality c, = s,-; and there exists 

an optimal score function a^[i ,J ), related to / . In fact, it is the same score function 

which was found by Hajek [61] for optimal detection of a lowpass deterministic signal. 

It should be emphasized that the class of tests (6.1.2) is DF-CFAR with the weak 

assumption that {x^, y,-} are i.i.d. under HQ. NO symmetry assumption on / is neces- 

sary, and our test does not utilize the sign of the observations, as has been common in 

previous works, cf. [32], [40]. 

In communication and target detection systems, the known part of the signal 

sequence, {s,-} is usually at the control of the system designer. The most interesting 

result of this section is that if a zero mean {s,- } is chosen, the performance of an optimal 

one-sample test, is identical with that of the parametric LMP for completely known / , 

and no reference samples are needed. Furthermore, this is simply achieved with phase 

shifting by TT half of the transmitted pulses, in an arbitrary order. The optimal statistics 

for each of the channels in (6.1.2) then take the form 

r(x)=    E     '^niRni)-    E     '^niRni) (6.1-3) 
0, =0 0, =7r 

and likewise for the y observations. For single-sweep ranking, the optimal test is of the 

form 

<     «„ (6.1.4) 

where here /?(;v/+i)i=li--).'^ is the rank of z,- in {x,-, x^+j-, X2n+i> ■ ■ ■ > ^Mn+i]- The 

large saving in ranking complexity is compromised for reduced detection performance, 

since here only if in addition M—>-co the performance of the optimal one-sample test is 

achieved. The section concludes with various numerical comparisons of the detectors. 

In particular, the superiority over the SW-SSQME test (Chapter 5) when the number M 

of reference vectors is small, is demonstrated. 

n 2 n 

YJ ^i '^M+l{R (M+l)i) + Zl ^i '^M + l{RfM+l)i) 
t=l 1=1 
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Traditionally, rank tests have been designed to achieve a DF-CFAR property, and 

then the detection probability was analyzed at one point in the noise distribution space, 

usually at the Gaussian, cf. [21], [32], [40], [52-55]. In Section 6.4, we study the detection 

performance of the various proposed tests, assuming the uncertainty in the noise p.d.f. is 

modeled by a mixture family. Common score functions are analyzed - median, Wilcoxon 

and normal scores. It is found that the quadrature rank tests with these score functions 

are inherently robust from a detectability point of view. In fact, in the worst case, P^ 

degrades only as some function of (1 - e), whereas heavily tailed contaminations hardly 

influence the performance. This is in sharp contrast with the parametric UMP scale 

invariant detector for fading narrowband signal in Gaussian noise. Chapter 2.2, where 

P^ —+ 0 even for small e when the variance of the contaminating p.d.f. is very large. 

In Section 6.5, maximin robust rank tests for the model (6.1.1) are found, when the 

noise p.d.f. belongs to a mixture family. The structure is identical with that of the 

optimal tests of Section 6.3, but now the score function ayv(*;/o) 's derived from the 

least favorable distribution / g, ie., the one that minimizes Fisher's information. In a 

similar manner to the SSQME tests, a soft limiter is utilized, but here it operates on the 

nominal score function of the ranks, and not on the original observations. The proof of 

maximin optimality parallels that for rank estimators [3], as the performance of both is 

proportional to the same functional. As usual, the efficiency at the nominal distribution 

is sacrificed somewhat in order to achieve overall good behavior. No increase in imple- 

mentation complexity over the traditional rank tests is incurred by the maximin robust 

test, as it is required only to store a different vector a^ in the look-up table. 

Section 6.6 extends the previous tests to handle an unknown signal frequency, a 

common problem which is always associated with detection of coherent signals, originat- 

ing from targets of unknown velocity. For the one- and two-sample ranking, we propose 

a structure similar to that of Chapter 5.3 - first n Doppler channels are generated by 
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the usual "butterfly" transformation, and then a robust rank test is performed in each of 

the Doppler channels. It is shown that the asymptotic SNR loss, for signals whose fre- 

quency is not matched to either of the discrete down-conversion frequencies, is identical 

with that of the DFT detector. For the single-sweep structure, an even more promising 

result is found. It is possible to achieve roughly the same asymptotic performance of the 

one- and two-sample tests, when the order of frequency conversion and ranking is inter- 

changed! First, the test cell observations are ranked with respect to their adjacent noise 

reference observations, and then an FFT is performed on the complex vector of the 

scores of the ranks. Thus, roughly, the complexity is that of the FFT algorithm, 

0{n\ogn), compared to 0{n-\ogn) of the one-sample and SSQME Doppler detectors. 

The major disadvantage is that fairly large M is required for small losses, thus the 

single-sweep rank Doppler detector is less appropriate than the one-sample, in a nonho- 

mogeneous environment. 

Finally, Section 6.7 presents some of the important results of an extensive Monte- 

Carlo study. While convergence to the asymptotic theory is slower, in comparison to the 

SSQME tests, it has been found that, roughly for n > 32, most of the conclusions of 

previous sections are valid. In general, for small number of reference noise vectors M, 

the robust rank detectors achieve a better P^ than the robust SSQME tests. 

As a consequence of the theoretical and simulation results, our tentative conclusion 

is that the proposed detectors emerge as more than adequate for successfully treating 

most of the uncertainties that are encountered in the real-world radar/sonar detection 

environment. Furthermore, the current developments in VLSI and VHSIC technologies 

indicate that implementation in typical systems can be considered practical. 
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6.2   Definitions and Preliminaries 

6.2.1 - The Available Observations and Classification of Rank Tests 

Denote by {xjg }j"==i the samples of the received waveform which contain the infor- 

mation about the useful signal if it is present, and by {a;,-y }j"^i, j = 1,...,M, the sam- 

ples from a noise reference channel. Later, we shall focus on narrow-band processes, 

where x represents both the in-phase and quadrature components. 

As a typical example of radar and active sonar systems, the transmitted waveform 

is an 72-long high frequency pulse train, where the pulse repetition interval (PRI) is T, 

and nT is the total dwell time of the antenna beam at a given spatial direction. The 

received waveform is passed through a filter which is matched to a single pulse in the 

train, and the effective pulse width at its output is r. The {i,_,-} are obtained by sam- 

pling the matched filter output every r seconds and, if the possible target location is at a 

delay of (g from the receiver, we have 

^io = a:(io + (' " 1)^) ,       .; 

(6.2.1) 

(   x{to-{M/2-j +l)T+{i -l)T)     ,      j=l,...,M/2 

""i^ = [   x{to + {j -M/2)r+{i -l)T) ,      y =M/2 + l,...,M 

In this way, the M length window in the range coordinate, which is spanned by the 

resolution cells adjacent to the possible target location, supplies the noise reference chan- 

nel. The detection process is basically an L ^ T jr hypothesis problem, where the A;"" 

hypothesis (presence of a target at f g = ^ ^) is checked sequentially by sliding the above 

window in the range coordinate. 

In this chapter, we shall always assume that the observables are i.i.d. across the i 

index (sampling time) for a given j index ("range time"). On the other hand, the 

assumption of identical distribution across the j  index is less valid in some situations, 

"3 '■  Sampling in other coordinates (frequency, spatial direction) is also possible, cf. [18], and will lead 
to identical results as long as the assumptions about the distribution of the reference samples are 
identical. 
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though it might appear strange as xij{l ^^ i) is more separated in time from x^j than 

^ik (^ 7^ j)- This is so because the dominant noise sources in radar (sonar) systems are 

due to clutter (reverberation) reflections of the transmitted waveform from the environ- 

ment (ground, sea, precipitation clouds, etc.). For a given j, they originate from the 

same spatial cell, and stationarity can often be assumed as the typical dwell time (0(10 

milliseconds)) is too short for substantial change of the reflection characteristics of that 

cell. On the other hand, samples with difi'erent j originate from difi'erent spatial cells, 

and the variation of the reflection characteristics is often large in nonhomogeneous 

environments. The choice of the reference window length M is an important design 

parameter. It reflects the designer's compromise between smaller losses at an homogene- 

ous environment with large M, and the losses due to violation of the inherent assump- 

tion that the reference window properly represent the noise in the detection cell, c.f. [201. 

Various rank test structures are possible, corresponding to the subset of {x,-} 

which is chosen to be ranked, see Figure 6.1. 

•• Figure 6.1 

■■ ONE - SAMPLE " 

"sampling       g 

lime "       n 
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"SLIDING-WINDOW" 
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a) Rank Tests for Two-Sample Situations 

Sticking to the terminology of the statistical literature, "two-sample" tests are 

based on ranking of the entire data set. The observables {a:,y } are pooled in a vector z 

of length N = n{M + I), such that the suspected signal samples are in the first group, 

i-e-, ^kn+i= ^ik> ^ = 0,1,...M, z is then ordered and the vector of ranks r is generated. 

Let 2(j-) be the z'*  sample in the ordered vector, and r,-  the rank of z^, i.e., 

Zi=zu^   ,   i =l,2,...n{M+l) ^ N (6.2.2) r,      > 

Naive computation of r,- can be done with 0 (A/'^) operations according to 

■   ■ N 

^i =  S   U{zi -zj)   ,   i = 1,...,A^ (6.2.3) 
3=1 

where U[■) is the unity step function. In practice, random sorting algorithms like the 

QUICKSORT [39] are preferred, as they require 0{N\ogN) operations. Throughout, we 

assume that the p.d.f. of x.y is continuous; thus, the r,- are well defined and unique. 

The statistic i?^,- = r,(z) will be called the rank of 2,-, and R/y will denote the vector of 

ranks [R^x, ■ ■ ■ , RNN)- A simple linear rank statistic for the two-sample situation is 

defined as 

TN{^N)= E   o.a^iR^i) (6.2.4) 

where c and a^ are some A'' dimensional vectors. Notice that once the data has been 

ranked, computation of T^ is simpler than that required for the LMP statistics of the 

form E K^i)> ^ it is only necessary to store in a look up table the N values of a^y • 

Under the alternative, when the SNR is sufficiently large, the ranks of the signal 

samples {ijo} will tend to be the largest, thus T^ will assume larger values than it has 

under the null hypothesis. We shall see that c and a^v can be chosen to optimize the 

detection process. In general, for a constrained signal structure, two-sample rank tests 

will  result  in  the  best  performance,   but  are  also  the  most  demanding  in   terms of 
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implementation complexity. Furthermore, when the inherent assumption of identical 

distribution of the reference samples and the signal samples is not valid, the test will not 

be CFAR. Also, large detectability losses can occur if, for instance, the noise power in 

the reference samples is higher than in the signal samples. 

Rank tests of this type which are appropriate for radar applications have been stu- 

died by Hansen and Olsen [53], Zeoli and Fong [54], and by Al-Hussaini, Badran and 

Turner [55]; see also [21] and [56] for extensive bibliographies. These works were limited 

for special non-optimal nonparametric tests (basically, modifications of the Wilcoxon, 

Mann-Whitney and Savage statistics), and for noncoherent radar processing. The reason 

for that is, probably, that with coherent signals, a "bank of Doppler tests," as was dis- 

cussed in Section 5.3, is necessary when the signal frequency is unknown. Therefore, the 

complexity of coherent rank tests increases by a factor of n , when compared to non- 

coherent processing. However, as a widely applicable rule, the efficacy of coherent pro- 

cessing is proportional to na (where a is the input SNR), whereas it is proportional to 

na'^ with noncoherent processing, hence substantially inferior for small SNR (see Appen- 

dix H). Also, the above mentioned works have been mostly concerned with the perfor- 

mance for Gaussian derived noises, for which the studied test statistics can be shown to 

be non-optimal. 

b) Rank Tests for the One-Sample Situation 

In this case, only the "signal" observables are available, {xiQ}"^^. In radar-sonar 

systems, this restriction can be enforced when the environment is known to be non- 

stationary, and no reliable assumptions concerning the statistical properties of the sam- 

ples across the reference window can be made. Another useful application of one-sample 

tests is in a multiple target situation, where a presence of another large signal (e.g., the 

result of airplanes flying in formation), can cause havoc when a two-sample test is used, 

cf. [20]. Traditionally, one-sample nonparametric tests have been based on the rank vec- 

tor    R^"*"    of    the    magnitude    of    the    observations:     Rj' = rank     of     | X^Q\     in 
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( I a; 10 I )•••; I ^no I )i ^-nd on the vector of signs 

r„(R+, S„)=  f]  s^gn(xio)a„(i?„+) (6.2.5) 
1=1 

To achieve the DF-CFAR property under the hypothesis, it must be assumed that 

the {XJO} have symmetric distribution. Application for narroM^band coherent signals was 

studied by Hansen [40] with the Wilcoxon scores a„ [R^i) = /?„,-. In this chapter, we 

also study statistics which do not depend on the sign vector 

Tn (Rn) =   E   c, a„ [R,,) (6.2.6) 
i=l 

Here, no assumption of symmetry is required to obtain CFAR; hence these tests are 

inherently more robust than the rank-signed tests, (6.2.5). However, in order to achieve 

satisfactory detection performance, it is necessary to apply a particular modulation of 

the transmitted signal set {s,- }, in a rather nonrestrictive way. Perhaps surprisingly, it 

turns out that it is possible to achieve better performance than that of the twosample 

tests, and actually the performance of the LMP parametric detector is reached asymp- 

totically. At the same time, the ranking complexity is substantially reduced. With 

QUICKSORT, the reduction is by a factor of (M+l)[l+log2(M+l)/logo(n)] «:i9 for 

n=32, M=5. 

c) "Single-Sweep" Rank Tests 

Here, for each information-gathering "sweep" z, the observables {z,-^ J/LQ are 

ranked separately,  i.e.,  i?(M+i),- = rank of X.Q m  {xf^ }/Lo; see Figure  6.1.    The test 

statistic is 

^Jv(^(M+i)i; • • • ,R[M+l)n) =   E   '^iHl+l{R[M+l)i) (6.2.7) 
i=l 

This test can be considered as a special case of a two-sample problem for random- 

ized blocks [50], or, in accordance with the terminology of Feustel and Davisson [57-58] 
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as a "mixed" test. Application to nonparametric radar detection, with noncoherent pro- 

cessing and Wilcoxon, Savage and rank-squared scores, have been studied in [52-55]. 

These tests minimize both the ranking complexity and the storage requirements. From 

sweep to sweep, it is necessary to keep only a single number, a (i?,-), compared to storage 

of n and n{M+l) observables with the one- and two-samples tests, respectively, before 

the test statistic can be computed. ^ Further, the ranking complexity is linear in M, since 

only a single rank is needed for each sweep. For noncoherent processing in Gaussian 

derived noise, the detectability losses compared to the corresponding two-sample tests 

are typically neghgible if M > 8, see [53-55]. This is probably the reason for the wide 

applicability of these tests in modern noncoherent radar processing. 

For a non-stationary environment, the usefulness of these tests is restricted, as M 

must be kept small, due to the same reasons that were discussed with regard to the 

two-sample tests. 

We will show later that for coherent narrowband signals, the relative loss between 

the single-sweep and the optimal one-sample test is considerable, when M is restricted to 

be small in order to preserve the stationarity assumption. 

6.2.2 - Some Previous Results on Rank Statistics 

In this subsection, we quote and summarize some known properties of rank statis- 

tics which are needed in the sequel. Except for the asymptotic distribution results, on 

which most of the results of subsequent sections are based, the proof of the quoted facts 

is pretty straightforward.   For a complete exposition, see Hajek and Sidak [49]. 

i) Hypothesis HQ 

Under HQ, the observations {a:,-},-^i are assumed  to be i.i.d. according to some 

"• The total storage for the entire detection range should be multiplied by the number of range cells 
L = T /T; see the discussion following Eq. (6.2.1). L is between 100-1000 for typical radar sys- 
tems. 
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arbitrary one-dimensional p.d.f. / (•).   Let R^ be the rank vector of X and r some point 

in the space P(A'') of all permutations of (1,2,...,A'').   Then 

Theorem 6.2.1 

Pr {R^ = r} = J^   ,   r G P(7V) (6.2.8) 

Pr {RM =j} = jj   ,   1< j <N (6.2.9) 

Pr{R^i =k, R^j = /} = j;^^   ,   i y^ j, k y^ I (6.2.10) 

and so on for the other joint distributions. Notice that these are independent of the par- 

ticular / (•), thus 

N 
Corollary 6.2.1 Any test based on the statistic  T^y ^ ^ c^ anf{Rf^i), is distribution 

•: 1 

free under HQ (DF-CFAR). 

Define 

a={l/N)  S   a^{i),c={l/N)  ^  c,- , a^ = (l/(iV - 1))  ^  {a{t)-af 
t=l !=1 i=l 

Then 

Theorem 6.2.2 Under HQ, 

ETN =Na-c    ,   VarTt^ = <^! S  (^i -cf (6.2.11) 

ii) Hypothesis Hj (Symmetry) 

/ (x) is an arbitrary one-dimensional symmetric p.d.f., 

f [x] = f {-x), X G (-00, oo), and the samples {x^ }fLi are i.i.d. Let R^ be the rank 

vector of the absolute values of the observations, S be the vector of the signs of the 

observations, and D be a vector such that £>,• = ± 1.   Then, 

Theorem 6.2.3 Under H^, for arbitrary symmetric / (•), the random vectors Rjy and S 

are mutually independent and 

Pr {S = D} = (1)^   ,   FJR + = r} = ^   ,   r e P(iV) (6.2.12) 
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Corollary 6.2.2 Any test based on the statistic  T/ J J] aNi^m) sign{Xi), is DF- 
1 

CFAR under//i. 

Theorem 6.2.4 Under Hi, 

^r/ = 0   ,   Var   r/=  ^   a\i) (6.2.13) 

iii) The (^-Functions and Scores 

Let F{x) be the distribution of / , and F~^{u ) its inverse.   Define 

^^" ' ^ ) =-TTSTTT       0<«<1 (6.2.14) 

Lemma 6.2.5 If / (■) is strongly unimodal (i.e., -log/ (x) is convex on the support of 

F{x)), (j)[u , / ) is non-decreasing. 

Lemma 6.2.6 If Fisher's information /(/ ) < oo, 

1 

nf) = JAu.f)du (6.2.15) 
0 

Define the HQ scores for a density / (•) by 

a^{iJ)^EH^{-l-P^-) = N{^^:l)^J'{x)F'-\x)\l-F{xr''dx   (6.2.16) 
J   \^{i)) -oo 

where {a;^,-)} are the order statistics of x. 

In a similar manner for H i, 

<^+(",/)^^(-^, /) (6.2.17) 

-} (6.2.18) 

2 

+f ■    r \   A   TT     f    J    \\ ^   \ (i)) 

/ (I ^   l(i)) 

Theorem 6.2.7 l^ J \ f '{x) \ dx  < oo, then 

N 1     ;v 

S  a^{i,f ) = 0  ,   i- E  «iv(^/ )</(/) (6.2.19) 
N i^i 
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and similarly for a^.   As N —>■ co, the left-hand side of the second equation converges 

to/(/). 

We shall refer to the a^[i J ) as the optimal scores (for a known f ). Let J{u ) be 

some arbitrary function, bounded and square integrable on [0,1]- Approximate scores are 

generated according to 

a^{i) = J{i/{N + 1)) (6.2.20) 

or 

i/N 

aj^{i) = N     J     J{u)du (6.2.21) 
(i-l]IN 

The ayv(-) are said to converge quadratically to /(«), denoted as ayv(') —^-/ if 

lim    / [a/v(l + [uN])- J[u)fdu =0 (6.2.22) 
iV ->oo   0 

where [2:] is the largest integer in [0,2;]. 

Theorem 6.2.8 If a^[i) satisfy either (6.2.20) or (6.2.21), a^{-) ^ J. Also, 

^ivl^)/ ) ~*'4'{u,f ). The implication of this theorem is that, asymptotically, a^[i ,J ) 

can be replaced by the approximate scores ai^[i), with J{u) = (p{u ,f ), see [49, pp. 

155-166]. 

iv) Asymptotic Normality of Linear Rank Statistics 

The asymptotic distribution of simple linear rank statistics is by no means a 

straightforward consequence of the central limit theorem - notice that the components of 

the rank vector are neither independent nor identically distributed. The question of 

asymptotic normality of rank statistics has been treated by many theoretical statisti- 

cians, cf. ChernofT and Savage [59] and the other references cited there. The following 

deep theorems by Hajek [49,61], who drew on an earUer work of LeCam [60], are the 

most general for our purposes. 
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Consider a shift alternative to HQ, 

N 

f i(x) = n   / [xi -di)   ,   I{f ) < CO, (6.2.23) 
i=l 

where the {d^ } satisfy Noether's conditions 

N _ 

lira     J^ {di - df = b^ < oo (6.2.24) 
^-°o ,=1 

E  {d. - df 
lim     '-^ =- == CO (6.2.25) 

N ^ ca      max     id: - dY 

Notice that these conditions constitute a special definition of a "small signal," which is 

an example of the "contiguity" (by LeCam's notion) of / i(x) to / o(x). In particular, 

for either a zero mean signal d^ = (-1)' d, or for a constant signal in the "signal" sam- 

ples di = d{\-U{i-n~\)), (6.2.25) is automatically satisfied. The condition (6.2.24) 

reduces to Nd^ ^ b or n{l-n /N)d^-*b . Thus, the regularity condition for non- 

singular detection is sufficient, and ^ -^- 0 alone is not necessary. 

We are interested in the distribution of 

N 

TN{'^N,C)=  E   Cia,^{R^i)- Na-c (6.2.26) 
1=1 

where a^{-) —>■ J. 

Theorem 6.2.9 Under the alternative (6.2.23), when the conditions (6.2.24) and (6.2.25) 

hold, the rank statistic (6.2.26), with 

N 

E (c. -^? 
lim     i — = cx) (6.2.27) 

N ^co      max     [c: -cY 

is asymptotically N{ni^ , a^), where 

N _     1 

Mrfc  ^ [E (Ci -c){di -d)]J [J[u)<t>{uJ )du (6.2.28) 
1 0 
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N 1 1 
a^ ^ [E {Ci - c )-] / {J{u ) - Jfdu  ,   J ^ J J{u )du ■  (6.2.29) 

10 0 

and (j){u ,/ ) is given by (6.2.14). The same is true under HQ where /i^^   = 0. 

n 
For ifj,  with  alternatives    IT   f {xj - d] (recall that now  /    is symmetric),  and 

j =1 

nd" —* b    < oo, similar result hold for the distribution of rank signed statistics. 

Theorem  6.2.10  The  statistic  (6.2.5)  with   a„{-)—>-J,   is  asymptotically  N{iJ,j,a'^), 

where 

1 

Hi ^ dn J J{u) 4>+{u,f )du (6.2.30) 
0 

^2 ^ E «n'(0 ^ "  / J\u)du (6.2.31) 
1 0 

where <p~^{u ,f ) is given by (6.2.17). ,     I . 

6.3   Asymptotically Optimal Quadrature Rank Tests for Narrowband Fading 

Signals in Known Noise 

6.3.1 - Two-Sample, One-Sample and Single-Sweep Optimal Tests 

Asymptotically optimal rank tests for detection of additive deterministic signals 

have been studied by Hoeffding [62], Capon [63], and Hajek [61]. The results of [61] 

actually show that the rank information is asymptotically sufficient, i.e., the optimal 

rank tests achieve the best possible performance. As in Chapter 4, for narrowband fad- 

ing signals with random parameters, we optimize the performance within a given family 

of tests. In view of our previous results and Appendix E, it is not surprising that the 

optimal ensuing test is composed of the test statistics that are also optimal for deter- 

ministic signals, and has the structure of a quadrature test. 
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The joint p.d.f.  under the alternative,  for the observations structure of Section 

(6.2.1.a), is 

n N 

f (x,y) =   n   / [xi-asi A cosO) f {yi-as^ A sinO)     U      f (x^)/ (y,)        (6.3.1) 
» — 1 i = n +1 

where A   is a positive r.v. with arbitrary distribution, 9 is U[0,2T:], {S,-} is a known sig- 

nal sequence with 

^ ^ -  S  s,-  < oo   ,   s"^ A 1  ^      2 _ j (g 3 2) 

The parameter a corresponds to the unknown SNR and N^n{M+1). f (•) is a p.d.f. 

of known shape, i.e., any shift and scale transformation / (x) -+ {l/a) f {{x - fi)/a) is 

allowed, as the rank vector is invariant for it. 

The following tests will be CFAR for any f (■) [see corollaries 6.2.1 and 6.2.2] and 

will optimize the detection performance for the particular / (■). 

Define a class of tests 

QN{R^, R^; C, a^) = g^(r^(R^; c, a^), T^{R^; c, a^v)) (6.3.3) 

where R^ is the vector of ranks for the pooled observations {xi }fLi, R^ is likewise for 

{y,-},•=!, ai^{-) —*■ J{u), J{u) is quadratic integrable on [0,1], c is some vector that 

satisfies (6.2.27), and Tj^{-, c,ayv) is a linear rank statistic given by Eq. (6.2.26). 

Proposition 6.3.1 Under the alternative (6.3.1) for HQ, when only the shape of /   i IS 

known, if    lim    a n = b   < oo, the asymptotically optimum test in the class (6.3.3) is, 
n —► 00 

for any distribution of A , 

[ S  Si a^iR^i, /)]'+[ E  ^i ^NiRk, f )P   ^< '   in H (6.3.4) 
1=1 j=l ^0 

where aj^{i J ) ^ J{u ) = 4>{u J ) according to either (6.2.16), (6.2.20) or (6.2.21) and 

-2       1 
t„ (a) = -2loga n{l- -rj—-) j J\u )du (6.3.5) 
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In particular, the optimum detection probability for a Rayleigh signal with A ^ = 1 is 

/3{a,f ,s) = a'n^ + SNR{f,s)l (g3g^ 

where the "effective integrated SNR" is defined as^ 

SNRif,s) = I^[l-^]nf) (6.3.7) 

Proof We first need to show asymptotic normality of the in-phase and quadrature rank 

statistics. Condition (6.2.24), specialized to the model (6.3.1) with s^=l, reduces to 

-2 

(1— ) lim na^ < CO 
M+l   n^<x, 

Also, Eq.(6.2.25) becomes 

Hm  nil-s%Vf+l))  ^ ^ 

"-00 max{(s,--s-/(M+l))', s^/{M+l)-} 
i 

Thus, the conditions of Theorem 6.2.9 are satisfied, r^(Ryv; c,a^) and T^{R^; c,ayv) 

are, conditioned on A and 9, jointly Gaussian and independent. Substituting the qua- 

drature shift parameters of (6.3.1) into (6.2.28) yields 

TV _     1 

^{r^(R;^; c,a^)| A, 9} = aA cos9 Y]  [ci -c){di - d) j J{u)4>{u,f )du{Q.S.8) 
i = l 0 

1 N 

E{TpjiR^; c,a^)|A,0} = aA sin^ J]  i^i - c){di - d) J J{u)cf>{u J )du (6.3.9) 

where di=Si{l-U {i-n-l)), d={n/N]s, and ^i{r^ }-> V^ol^iv } are identical for both 

channels and are given by (6.2.29). As in the proof of Proposition 4.1 (see Chapter 4.2, 

Eq. (4.16) and the following), the UMP test statistic m the class (6.3.3), for a given J{u ) 

and c, is given by ryv(R^; c, a^r) + r^^(R^; c, a^). This is true for any distribution 

of A since the likelihood ratio is a monotone function of this statistic for any positive 

A .   It remains to optimize c and /(•).   As in Chapter 4.2 (see also Appendix E), the 

Notice that  SNR{f ,s)/{na-/2) coincides with  the usual definition of the efficacy for 
asymptotically Gaussian test statistics.   See also Appendix E. 
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asymptotic detection probability is 

EAQ 
E^T^j-R.^; c,a^) \ A ,8} + ^^{r^(R^; c,a^) | A ,6} 1/2 

(6.3.10) 

, \/-21ogQ; 

wliere   Q{-,-)  is Marcum's  Q-function  (notice  that  9 cancels).    Since  it  is monotonic 

increasing in the first argument, it suffices to maximize the efficacy 

(6.3.11) 

N 

e(c,d,/(-),/)=G(c,d)G(/(-),/(-))= 

Y,{ci-c){d^-d)f   [Jj{umu,f)du 
>=1 

■T\2 
N 

nY,{ci-T) 
i=l 

J[J{u)-J]'^du 

For future purposes, G{J,f ) is also given by 

[/  J{F{x))f'{x)dx]'        [/    J'{F{x))f\x)dx[ 

G{J{-),f{-)) 

J [J{u)- J]'^du 
0 

/ [/(«)- J]'^du 
0 

where the second equality is valid for bounded and differentiable /(•)• 

From the Cauchy-Schwartz inequality, we must have for a maximum 

(6.3.12) 

Cj - c  ^ d{ - d =: 
(M + 1) 

+ Si{l - U{i -n -I)) (6.3.13) 

Since J  (j){u ,f ) = J   / '[x)dx = 0, we can replace in the numerator of (6.3.11) J[u) 
0 -<xi 

by J[u) - /, and from the Cauchy-Schwartz inequality we must have for a maximum 

J[u) = 4>{u ,f ). Hence the optimal scores are ajv(«, / )—>■ (f){u , f ). Substituting 

(6.3.13) into (6.2.26), 

TN = S(ci-^)ayv(^M J ) =  S Si a^(/?M ,/ ) - T7^ S «iv(^M J ) (6.3.14) 
i=l M+l i% 

and the last term vanishes by virtue of (6.2.19).   Also, 
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Under HQ, QJ^ is one sided exponentially distributed, and (6.3.5) is obtained from 

(6.2.29) and (6.3.15). For a Rayleigh signal, Qp^ is again one-sided exponential, as in 

Chapter 4.3.   Combining (6.2.15), (6.3.11) and (6.3.15), yields (6.3.6) and (6.3.7), Q.E.D. 

Remarks 1) Proposition 6.3.1 remains valid when the definition of the class (6.3.3) 

allows different a,^ and c vectors for the x and y channels. 2) Note that in the optimal 

test, the known signal sequence is correlated with the vector of scores, and not with the 

raw observation vector.   This is also true for all the other tests that follow. 

Corollary 6.3.2 For a constant signal, s,- = 1,  SNR{f ,s) = i^     ^^     /(/ ).   As 
2     M+1 

M —y Qo, it approaches the performance of the parametric locally most powerful (LMP) 

quadrature test 

QLMP = 
.•=1        f i^i) 

L Si 
1=1 fiVi 

(6.3.16) 

which necessitates complete knowledge of / (■) to obtain the CFAR property. While the 

rate of convergence with increasing width of the reference window is low, the losses for 

small M are reasonably low, e.g. 3dB and IdB for M = 1 and 4, respectively. 

Proof Computation of the asymptotic detection probability for the test based on the 

statistic (6.3.16) is similar to that in the proof of Prop. 6.3.1. Substituting s=l in 

(6.3.7) shows they are identical when M-+00. 

By the way we have defined the parameters in (6.3.1), aA represents the unknown 

reflection characteristics of the target signals, whereas the {5,} are at the control of the 

system designer. In particular, it is possible to obtain arbitrary {sj- } by introducing 

phase modulations in the transmitted high-frequency pulse-train. In this way, none of 

the   transmitter  power,  which  determine  the   achievable  detectability,   is  lost.    From 
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(6.3.7) or (6.3.15), it is clear that even better performance than that of Corollary 6.3.1 is 

possible. 

Corollary 6.3.3 (The optimal signal.) With zero mean signal, s = 0, the best perfor- 

mance can be achieved even with M = 0, i.e. without any reference window! In partic- 

ular, for even n , with [n /2) phase shifts c^,- of -K on the transmitted pulse train, at arbi- 

trary order, one obtains the the simple statistic 

TN=    H    an{RniJ)-    S    a,[R,,J) (6.3.17) 

Notice that CFAR is obtained without any assumption of symmetry of / (•), and 

no use is made of the sign of the observations. Therefore, a quadrature test based on 

(6.3.17) will be the best for multiple targets and non-stationary environment. The 

statistic (6.3.17) is also very reasonable for finite n . For large SNR, at both quadrature 

channels, the {R„i, (j)^ = 0} will tend to be among the lower or upper half of the rank 

vector, depending on the arbitrary target phase 9. As a„[i) is increasing with i, see 

Lemma 6.2.5, the absolute value of Tyy grows with SNR, and achieves its maximum 

value when  SNR —*■ oo and the ranking is perfect (i.e., /?„,-  > n /2 or R„i  < n /2, V 

0,- = 0). 

Proposition 6.3.4 Under the alternative (6.3.1) for Hi and a one-sample situation, if 

lim a n   < oo, the asymptotically optimal test is, for any distribution of A , 

[S  sign{x,)a,{R^,\jf+[Y^  stgn[y,)aJRy,\j ]f   V   t,{a)     (6.3.18) 
1=1 t=l ^0 

where a„ [i,/ ) —*■ J{u ) = ^'^[u ,f ) and 

t„{a) = -21oga nj J\u)du (6.3.19) 

For a Rayleigh signal, SNR (/ ) = -^^^/(/ 



129 

Proof Parallels the proof of Proposition 6.3.1, using Theorem 6.2.10. 

Remarks 1) The performance is identical with the test of corollary 6.3.3. However, this 

test is more complicated to implement as the sign vectors are also needed, and is less 

robust as it is CFAR only for symmetric / (•). 2) With a^(0 = i, this is the Wilcoxon 

narrowband detector, which has been studied by Helstrom, Carlyle and Hansen [40]. 

However, no optimum properties of this test were discussed by these researchers. 

Similarly, for single-sweep ranking. Chapter 6.2.1c, 

Proposition 6.3.5 Under the alternative (6.3.1) for HQ, the single-sweep asymptotically 

optimum test is, if lim rza^ < oo, for any distribution of A , 

[E  Si«M+i(^fA/+i)i,/)]-+ [E  5iaM+i(^fA/+i)i,/ )]"     <     t„{a)      (6.3.20) 

where 0^+1(21/ ) are given by Eq. (F.8) of Appendix F, and 

1 A/ + 1 
t„{a) = -2\osan-^^^   ^   «AI+I (^/) (6.3.21) 

For a Rayleigh signal. 

na'       1      ^+1     ^ ^^2 
SNR (s, / ) = i^ ^ ^^ a,h, (/ J ) - ^ /(/ ) (6.3.22) 

Thus, with large M, single-sweep rank tests do not incur any loss and are appropriate 

for homogeneous environment. 

Proof See Appendices E and F. Unhke the previous cases of one and two-sample rank 

tests, the derivation is based on a simpler asymptotic distribution result, as the channels' 

statistics in (6.3.20) are the sum of i.i.d. variables. 

6.3.2 - Some Optimal Score Functions (See also [49]). 

i)       For Gaussian  / , <t)[u J ) = (j)~^{u).   When the scores are computed according to 

(6.2.20),  i.e.,   a^{i) = 4r^{i/{N+1)),  the  various  rank   tests  are of the Van  der 
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Waerden (VDW) type.   If the scores are computed from (6.2.16), they are of the 

Fisher-Yates-Terry-HoefiFding (FYTH) type.   Both are asymptotically equivalent, 

ii)     For   logistic   p.d.f.,   /   = e"^ (1 + e"^ )-2,   (f>{u ,f ) = 2{u - 1/2).    Computed   by 

(6.2.20), the a^{i) are the Wilcoxon scores i /{N+l) - 1/2. 

iii)    For double exponential /, ^(u ,/)=sign(w-l/2).   The corresponding twosample 

^                  N+l test is of the  median  type,   T =Y,sign{Rj^i ^).   For one-sample situation, 

4>^{u J )=s\giiu   (see   6.2.17),   thus   a„+(i?j-)=l   and   a   narrowband  sign   test   is 

obtained. 

iv) For the "least favorable" p.d.f. from an e-mixture family with a Gaussian nominal, 

Eq. (4.13), f'/f{F-\u)) is constant for | ^-^(w) | <^, and in this interval 

F{x) = {1 - e) (t>{x) + e/2; thus F~^{u) can be solved explicitly and it is obtained 

(see also [3, pp. 99]) 

<t>{u,f)= 

,   n  >|- + (l-e)^(A;) 

^"'(^^)   >   ^+{^-^)4>{-k)<u <^+{l-e) 4,{k) (6.3.23) 

,   u   <± + (l-e)<^(-A:) 

The various rank tests designed with this score function possess a maximin pro- 

perty as will be shown in Section 6.5. We will refer to them as the robustified 

VDW type (RVDW). The robustness results from limiting the influence of the 

extreme ranks.   As e -+ 1, the RVDW tests clearly reduce to the median tests. 

6.3.3 - Comparison Between Two-Sample and Single-Sweep Tests 

In general, the relative performance between the tests that are based on different 

ranking structures, depend on the underlying noise p.d.f. and on the score function. 

With the optimal score function for a known / , the ARE is found from (6.3.7) and 
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(6.3.22) as the ratio of efficacies, 

ARE IS,ss — 
-25 

-ss 

j2 

M+l ■) ni) 
1 M+l 

„^l     E    «M^.(',/) (6.3.24) 

where subscripts SS and 25 denote single-sweep and two-sample, respectively. 

Assuming that A'' = n{M+l) is sufficiently large (but finite) such that asymptotic 

normality has been reached, an approximation for the relative efficiency (RE) is obtained 

when   in   the   above   /(/)   is   replaced   by   Ij^{f ) ^ {1/N) J] a-{l ,f ).    Notice   that 
1 

(6.3.24) with s =0 gives also the ARE with respect to the previously studied one-sample 

tests. 

Table 6.1 displays /^(/ ) with VDW scores. Table 6.2 shows the RE for Gaussian 

f , n =20 and different window sizes. It is seen that in a non-stationary environment, 

when small M is preferred, the loss incurred by single-sweep ranking is substantial. 

I^if ) for the "least favorable" / *(e = 0.1) with the RVDW {k = 1.14) scores, 

generated from (6.3.23) according to (6.2.20), is shown in Table 6.3. As the rate of con- 

vergence to /(/ *) = .671 is much faster, the loss from single-sweep ranking is smaller. 

For n = 20, M = 3, i?£'i5 55 =1.31 only. (Of course, the absolute efficiency for each 

of the tests for / * is smaller by 0.671 compared to the Gaussian). 

With the Wilcoxon scores, the ARE of single-sweep ranking with respect to the full 

ranking schemes takes a very simple form: 

Proposition 6.3.6 The ARE of single-sweep ranking with Wilcoxon scores is indepen- 

dent of f   and is given by 

ARE2s,ss = [1 - s^iM+l)] [1 + 2/M] 

ARE,s,ss = 1 + 2/iV/ 

(6.3.25) 

(6.3.26) 

The proof is given in Appendix G, where it is shown that for J{u ) = «'- 1/2, and 

[i)=i/{N +1)- 1/2,    / J{u)<t>{u,f )du   is proportional to   ^   a{i)aN{i J ) for all 
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/ . As for the VDW scores, for non-stationary environment when large M cannot be 

taken, Eqs.(6.3.25-26) show that single-sweep ranking incurs considerable loses; neverthe- 

less, the ARE is clearly bounded by 3 [-*b dB loss). 

6.3.4 - Comparison with the SW-SSQME Test 

From Eq. (5.6), the detection probability of a Rayleigh signal with the SW-SSQME 

CFAR detector, at the noise p.d.f. against which it is optimized, is given by 

l^swif ,a) a   '     - I      ] ^^T-r^ na 

' + 1 + sNR,^     ■ ^'^«» = "T ^(/)    (^''■'-n 

The detection probability for the two-sample optimum rank test (2SR) is given by 

(6.3.6),     where     the     SNR     with      a     constant     signal     (the     worst     case)     is 

A/f 2 
SNR 2SR =-T-r— —I{f).    As   the   limit   distributions  are   different  for   finite  M,   a 

single-number measure of performance like the ARE is inappropriate.   In Table 6.4, we 

2 

compare the effective integrated SNR,  ISNR A^^^^I[f ), which  is required  to attain 

specified a and /?, equal for both detectors. 

ISNRsw = {a-'/^ - l)/{ir'^" - 1) - 1 (6.3.28) 

ISNR 2SR = ^^ (loga/log/? - 1) (6.3.29) 

Notice  that  the  performance  for  the optimal one-sample  rank  tests  is given  by  the 

A/ —>■ GO column. 

The performance of the optimal rank tests is seen to be substantially superior 

unless M is large. Therefore, as was promised to be shown at the beginning of this 

chapter, they are to be preferred in a nonhomogeneous environment where M must be 

restricted. 
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N I^if) N //v(.n 
4 .386 100 .923 
6 .497 120 .933 
8 .570 140 .940 
10 .622 160 .946 
12 .661 180 .951 
14 .691 200 .955 
16 .716 400 .974 
32 .822 600 .982 
64 .892 1200 .990 

N 
Table 6.1   I, N (/)=is (7V+1] 

Gaussian / 

M 1 3 5 7 9 11 15 31 63 
Hh/ 09 99 1.34 1.76 1.56 1.45 1.38 1.33 1.26 1.16 1.09 
RE^f;   9.9 2.67 2.35 1.88 1.66 1.54 1.45 1.35 1.20 1.11 

Table 6.2 Relative efficiencies of one-sample and two-sample ranking 
compared to single-sweep ranking. VDW scores, 5^1,n ^20. 

N 4 6 10 16 32 64 100 200 00 

Ir^if*) .508 .582 .608 .632 .652 .661 .665 .668 .671 

Table 6.3    INH *) for the least favorable / *(e=0.1). RVDW scores with k=1.14. 
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M 1 2 4 8 16 32 128 oo 
ISNRsw [dB] 
ISNR.,r,(dB] 

19.9 
10.5 

13.2 
9.3 

10.2 
8.5 

8.8 
8.0 

8.2 
7.8 

7.8 
7.6 

7.6 
7,5 

7.5 
7.5 

Table 6.4 Effective integrated SNR for SW-SSQME and 2-sample rank tests, 
both optimized for the same noise p.d.f.   a) P,^ =10"^, P^ =0.5. 

M 1 2 4 8 16 32 128 CO 

ISNRsw [dB) 
ISNRoc^^idB] 

29.5 
19.3 

22.2 
18.1 

19.0 
17.3 

17.6 
16.8 

20.0 
16.6 

16.6 
16.4 

16.4 
16.3 

16.3 
16.3 

Table 6.46 F;,=10- =0.9. 

M 1 2 4 8 16 32 128 oo 
ISNRsw {dB) 
ISNRo,p{dB) 

60.0 
15.8 

33.8 
14.5 

22.1 
13.7 

17.0 
13.3 

14.8 
13.0 

13.7 
12.8 

13.0 
12.8 

12.8 
12.8 

Table 6.4c ) Pfa=lO-', =0.5. 

M 1 2 4 8 16 32 128 oo 
ISNRsw {dB) 
ISNRo.,pidB) 

69.5 
24.2 

42.7 
22.9 

30.6 
22.1 

25.4 
21.7 

23.2 
21.4 

22.2 
21.3 

21.4 
21.2 

21.1 
21.1 

Table QAd) ^/a=lo-^ P,=0.9. 
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6.4 The Natural Robustness of Rank Tests ' 

The SW-CFAR version of the parametric UMP detector for narrowband fading sig- 

nals in Gaussian noise, Eq. (2.8), is extremely non-robust. Its effective SNR, which 

determines the detection probability according to (6.3.6) or (6.3.10), is inversely propor- 

tional to the total noise variance. In an unrestricted e-mixture family, 

V = (1 - e) + ea^ can approach infinity for very spiky noise, hence detectability could 

be completely lost. The robust tests that were studied in Chapters 4 and 5 are immune 

to heavy tailed contaminations, but once the robust estimator was designed according to 

some ^(e^;), if the actual contamination e is larger and e -+ 1, the effective SNR —>■ 0. 

From Eq. (5.3), if all the contamination lies outside [-k, k], we obtain 

y_l+2{k"--l)<j>{-k)-2kg{k)+kh/{l~e) 
{l-e)[l-2<P{-k)f 

CO (6.4.11 
£-*l 

However, it turns out that the various rank tests inherently possess similar immun- 

ity against heavy tailed noise, and in fact, the detectability loss is characterized by some 

power of (1 - e). This is seen from the functional that influences the effective SNR and 

through it the detection probability, G[J J ) of Eq.(6.3.12). 

Proposition 6.4 Assume that J[u) is monotonic increasing, and denote the denomina- 

tor of (6.3.12) by / . Then, if the noise p.d.f. belongs to a mixture family 

/ e^(l-e)/ Q-\-th , we have: 

a) If /(•) is differentiable, 

G (/,/)> (1 - e)''[min J'{u f[J f «- [x )dx f jJ^ (6.4.2) 

b) If /(w) is piecewise constant and discontinuous at u=l/2, with a jump A/(l/2), 
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Proof Immediate from the definition and the assumptions, using / ^ > (1 - eff Q . For 

Part a, from the variational necessary condition for a minimum of G with the con- 

straints on / , it can be shown that no solution for it exists and thus the inequality in 

(6.4.2) can never be replaced by an equality. It can also be shown that as the spread of 

the contamination increases, G approaches its lower bound, which is reached with 

degenerate contaminations (e.g., h = U[-a ,a\, a -+ oo or N{0,c'^), c —>■ oo). 

Applying the proposition for the various score functions, for a Gauss-Gauss mixture 

F^{x ;c )={l-e)(l){x )+e(f){x /c ), we obtain after solving the integrals 

i)  VDW Scores 7^= /(<^) = 1, min/'(-) = ^2^, 

2 

G{r\u),f,)=27r Jexp{Ur\F,{x;c))\'}f:-{x;c)dx > 1-e 

This bound is not tight; for small e, a Taylor expansion yields 

(6.4.4) 

G{r\^'),fe)-[l-J{c'-l)?+0{e\c ~ 1)) (6.4.5) 

ii) Wilcoxon Scores, 7^= 1/12, /'(•) = 1, 

G{u-1/2J,)=± 'J-^f 2^26(1-: 

(1+^0 2U/2 

72" iii) Median Scores J'^ = 1, /(O) = 1, using part b), 

12 
e    ,  e 

(6.4.6) 

G'(sign(u - 1/2), / ,) = 4/ 2 (0) = ±.[l ^ e + ^]'' > ± {I - e 
TT 

(6.4.7) 

iv) RVDW Scores The robustified VDW scores of Eq. (6.3.23), designed according to 

^'{^d)) where e^ is the design e, 

(6.4.8) 

G{RVDW,f ;)=- STT 

l-e,Yl{F*{e,)) 
/expj^ 

F,{x;c)-e,/2 

1-e, 

12, 

/ ^{x;c)dx 

l\]2 > 1 ilzJiL Ik_Mzi!)l 
2   {l-e^f      l-2cl>{-k) 
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where x'   is the solution of 

(1 - ^)4>{x') + e<t>[x '/c ) = (1 - e, )4,[k ) + ej2 (6.4.9) 

Generally, for e>l-\/273=0.18 and heavily tailed contaminations, the median tests 

are the most robust (with the largest loss 2/7r=-l.g6dB at the Gaussian), the Wilcoxon 

tests are the second best (with merely S/TT = -0.2dB loss at the Gaussian), and the 

VDW are the least robust. The RVDW is intermediate to the VDW and the median 

tests. 

More specific conclusions can be drawn from Tables 6.5-6.8, which exhibit the exact 

losses, compared to the UMP for Gaussian, in dB: -101ogio(G'(/,/J). ((6.4.4) and 

(6.4.8) were numerically integrated). Notice that the performance of the RVDW tests is 

not identical with that of the SSQME tests, as the functionals G{J J ) and l/V{l J ) of 

Eq. (4.11) are different, unless both /(•) and /(•) are the optimal for / . However, the 

difference is generally small, by comparison of Tables 6.8 and 5.1. 

e"~--^c 1.00 3.33 10.00 33.3 100.00 
0.01 0.20 0.30 0.35 0.37 0.37 
0.10 0.20 1.25 1.75 1.95 2.00 
0.20 0.20 2.33 3.44 3.88 4.01 
0.30 0.20 3.45 5.27 6.04 6.28 
0.40 0.20 4.59 7.26 8.49 8.87 
0.50 0.20 5.74 9.43 11.30 11.91 

Table 6.5 losses (dB) for Wilcoxon detector, / =(l-e)7V(0, l)+eN{0,c-) 

^e'-'^-^c 1.00 3.33 10.00 33.3 100.00 
0.01 0.00 0.22 0.36 0.41 0.43 
0.10 0.00 1.67 2.56 2.89 2.99 
0.20 0.00 3.01 4.67 5.34 5.53 
0.30 0.00 4.26 6.75 7.83 8.16 
0.40 0.00 5.43 8.87 10.48 11.00 
0.50 0.00 6.53 11.04 13.40 14.21 

Table 6.6 losses (dB) for VDW detector, / =(l-e)yV(0, l)+eN{0,c'^) 
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t —^c 1.00 3.33 10.00 33.3 100.00 
0.01 1.96 2.02 2.04 2.05 2.05 
0.10 1.96 2.59 2.78 2.85 2.87 
0.20 1.96 3.27 3.68 3.83 3.88 
0.30 1.96 4.01 4.69 4.95 5.02 
0.40 1.96 4.81 5.84 6.23 6.34 
0.50 1.96 5.70 7.15 7.72 7.90 

Table 6.7 losses (dB) for median detector, / =(l-e)A^(0, l)+eN{0,c-) 

e\>..c 1.00 3.33 10.00 33.3 100.00 
0.01 0.06 0.18 0.24 0.27 0.27 
0.10 0.06 1.37 2.16 2.48 2.57 
0.20 0.06 2.74 4.33 4.96 5.14 
0.30 0.06 4.04 6.45 7.47 7.78 
0.40 0.06 5.25 8.59 10.15 10.64 
0.50 0.06 6.40 10.81 13.09 13.86 

Table 6.8 Losses (dB) for RVDW rank detector. / =(l-e)7V(0, l)+eiV(0, 
a) k=   1.945, design e=0.01, G {/ * )=-0.27 dB 

^"""^v^C 1.00 3.33 10.00 33.3 100.00 
0.01 0.44 0.52 0.55 0.56 0.56 
0.10 0.44 1.26 1.57 1.68 1.72 
0.20 0.44 2.15 2.89 3.19 3.28 
0.30 0.44 3.14 4.52 5.15 5.35 
0.40 0.44 4.24 6.60 7.86 8.25 
0.50 0.44 5.43 9.07 10.95 11.57 

Table 6.86  k=   1.140 design e=0.1, G{f *)=-1.73 dB 

"e^^^c 1.00 3.33 10.00 33.3 100.00 
0.01 0.77 0.84 0.86 0.87 0.87 
0.10 0.77 1.49 1.72 1.81 1.84 
0.20 0.77 2.26 2.81 3.01 3.07 
0.30 0.77 3.11 4.07 4.45 4.56 
0.40 0.77 4.05 5.57 6.24 6.46 
0.50 0.77 5.09 7.45 8.68 9.11 

Table 6.8c  k=  0.862 design e=0.2, G[f *)=-3.11 dB 
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t^^C 1.00 3.33 10.00 33.3 100.00 
0.01 1.05 1.12 1.14 1.14 1.15 
0.10 1.05 1.72 1.94 2.01 2.03 
0.20 1.05 2.45 2.92 3.10 3.15 
0.30 1.05 3.24 4.05 4.36 4.45 
0.40 1.05 4.11 5.36 5.86 6.01 
0.50 1.05 5.07 6.92 7.74 8.00 

Table 6.8d k=   0.685 design €=0.3, G {f *)=-4.51 dB 

e^-^^c 1.00 3.33 10.00 33.3 100,00 
0.01 1.29 1.35 1.37 1.38 1.38 
0.10 1.29 1.94 2.14 2.21 2.23 
0.20 1.29 2.64 3.08 3.24 3.29 
0.30 1.29 3.40 4.15 4.43 4.51 
0.40 1.29 4.24 5.37 5.81 5.93 
0.50 1.29 5.16 6.80 7.47 7.68 

Table 6.8e  k=  0.555 design e=0.4, G {f -6.02 dB 

Y"-\ c 1.00 3.33 10.00 33.3 100.00 
0.01 1.51 1.57 1.59 1.59 1.60 
0.10 1.51 2.15 2.34 2.41 2.43 
0.20 1.51 2.84 3.26 3.42 3.46 
0.30 1.51 3,58 4.30 4.56 4.64 
0.40 1.51 4.40 5.47 5.88 6.01 
0.50 1.51 5.31 6.84 7.46 7.64 

Table 6.8/   k=  0.436 design €=0.5, G {f *)=-7.73 dB 

^^~~\C 1.00 3.33 10.00 33.3 100.00 
0.01 1.73 1.80 1.81 1.82 1.82 
0.10 1.73 2.37 2.56 2.62 2.64 
0.20 1.73 3.05 3.46 3.61 3.66 
0.30 1.73 3.79 4.48 4.73 4.80 
0.40 1.73 4.60 5.63 6.02 6.13 
0.50 1.73 5.49 6.95 7.52 7.71 

Table 6.8^ k=  0.291 design €=0.65, G{f -10.96 dB 
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6.5 Asymptotically Maximin Rank Tests 

The effective SNR of the optimal rank tests of Section 6.3 were shown to be pro- 

portional to /(/ ). Therefore, the least favorable p.d.f. of Eq. (4.13) is a candidate for a 

maximin solution. Notice, however, that G{JJ ) of Eq. (6.3.12) is not a convex func- 

tional, and the maximin property is therefore not a consequence of the minimax property 

for M-estimators. Huber treated rank estimators for location in [3]. It turns out that 

their variance is precisely l/G{J ,f ). Thus the minimax property of the estimation vari- 

ance is translated to a maximin relation on the detection probability. As the proof in [3] 

is not detailed, we complete it here. 

Proposition 6.5.1 Let P^ = {/ = (1 - €)g + eh }, where g is known, symmetric and 

strongly unimodal, and h an arbitrary symmetric p.d.f. Denote by / „ = (1 - e)(/ + eAg 

the p.d.f. which minimize /(/) in P„ Eq. (4.13). Let a^(z)-1/o(" )= 

-fo'{FoH^))/fo{FoH^))-  Then, 

^^ ^""^""^ G {JoJ o)<G{Jo,f)     \if  eP,      . (6.5.1) 

b) For arbitrary positive r.v. A  in (6.3.1), 

l3{f)=E^E,l3{f\A,0)>P{f,)    V/   €P, (6.5.2) 

i.e., combining with Propositions 6.3.1 and 6.3.4, the various one- and two-sample rank 

tests are asymptotically maximin robust. 

Proof a) Since the denominator of (6.3.12) is not a function of / , it suffices to show 

1 1 

/ Jo'iu )f o{Fo' {u ))du  < jJo'iu )/ {F-\u ))du 
0 0 

By the assumptions of symmetry and strong unimodality, /' > 0 and both integrands 

are symmetric around u =1/2. Also, /g'(w) = 0 outside /«(£) = 

{u e [1/2, Fo(A;(e))]}, from Eq. (4.13). Thus, it suffices to show 

/ o(-^o"^ («))</(^"H"))       on        4(e)-        Since        h^^O       on        this       interval, 
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f o{F-\u))<f {F-\u)). But on I,{e) ^ {x e [0,k{e)]}, Fo{x)<F{x), and 

Fo(0) = F(0) = 1/2. Thus, on /„ , Fo{F-\u )) < F{F-\u )) = u , and taking F^^ on 

both sides, 0 < F-\u ) < Fo^{u) < k. 

Finally, by virtue of the strong unimodality, / 0(2:) is decreasing on [0,oo). Com- 

bining all these inequalities, 

f oil'o' i^)) < f oiF-\u)) < f {F-\u)) 

on/„(e), Q.E.D. 

b) Immediate from (6.3.10), as /?(/   | A ) is monotonic increasing in G[JQJ ). 

Corollary 6.5.2 The rank tests designed according to the RVDW scores, Eq. (6.3.23), 

are asymptotically maximin robust within a mixture family with g = yV(0,l). 

Remarks 1) The maximin is valid only for symmetric / . The two-sample and the 

one-sample tests with zero mean signal, Eq. (6.3.17), remain DF-CFAR for all / . 2) For 

the single-sweep tests. Proposition 6.5.1 is valid if also M —»• 00, since the functional in 

Eq.(F.lO) of App.F converges to G{JJ ). 

6.6 Robust rank detectors for unkno^vn signal frequency 

When the signal frequency is unknown, due to Doppler shift of the reflected signal 

from a target of unknown velocity in a radar/sonar situation, the situation is similar to 

that of Chap. 5.3. In this chapter, two different ways of constructing Doppler bank 

detectors are investigated, corresponding to the different ranking structures. We show 

that the the effective SNR is given by the same expression as before, multiplied by a loss 

factor for unmatched frequency. Hence, all previous conclusions about maximin optimal- 

ity remain valid. 
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6.6.1 One - and two - sample rank Doppler detectors. 

The distribution of the observations is given by Eq.(6.3.1), where 61—►/?• 

^i=2m^  > +e   ,    |A|   <0.5 (6.6.1) 
J r 

and /, is the sampling frequency. As with the SSQME - Doppler test, we take 

f =[k /n)f, ,k=l,..,n, and construct n frequency channels by the "butterfly" 

transformation 

h [k ) = Re[(z, +jy,) W},']      ,      g,  = Im[(x, +jyi) W^'] (6.6.2) 

where VK„ =exp(-y 27r/« )• Thus, A is the deviation of the signal frequency, from the 

center of the nearest filter, normalized by the filter width fr/n. Notice the "butterfly" 

transformation is performed only on the test cell, but not on the noise reference observa- 

tions. For each of the frequency channels, the transformed observations are ranked 

according to 

Rlfi = rank of /,• in   {/j, , /„ , a:„+i, , xyy } 

(6.6.3) 

R^i = rank of Q,- in   {Qj, , §„ , y„^^, , y^} 

where the k (frequency) index is dropped for simplicity of notation. The test statistics 

for each of the frequency channels are of the form T^/^+Q^, where 

vn i=i Vn i=i 

and {si } are the known signal modulations, Eq.(6.3.2). The asymptotic performance of 

this detector structure is given by the following. 

Proposition 6.6.1 a) In the expression for the efficacy, Eq.(6.3.11), the first term 

G (s, s) is replaced by 

G(s, s, A) =   lim 

-Ei^i-S /{M+l))siexpU2mA/n 

(1_5V(M + 1)) 
(6.6.5) 
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b) For a zero mean signal, 5=0, 

G{s, s. A) =   lim 1    " 
(6.6.6) 

which is identical to the loss factor of the quadrature matched filter detector (DFT), for 

a time varying signal with unmatched frequency. In particular, when Sj =±1 

G(s, s. A) = [sin(7rA)/7rA]2 (6.6.7) 

c) For two - sample rank Doppler tests, with Sj ^1, 

G(s, s, A) = -iL-[sm(7rA)/7rA]2 (6.6.8) 

The proof of a) is given in Appendix I; b) and c) are straightforward consequences. 

Note that a stronger statement about the asymptotic P^ would be desired. However, 

we could not prove or disprove that it is given by substituting the modified efficacy into 

(6.3.10). This was true if / and Q of (6.6.4) were shown to be asymptotically uncorre- 

lated, see App. I. Notice that /,■ is uncorrelated with <5,-, but in general for non - Gaus- 

sian {Xi, y,- } they are not independent. The difficulty is in finding a manageable expres- 

sion for P {Rpji=l, R^-=zm }, which is needed to compute E{IQ). Due to the ranking 

operation, i?4- and R^^ are not i.i.d., even though X,- and Yj are. However, simulation 

results indicated the stronger statement is probably valid, besides being valid for Gaus- 

sian noise. 

6.6.2 Single - sweep rank Doppler detectors 

Though a Doppler - bank of detectors could be constructed in the previous manner 

with identical results, for single - sweep ranking a simpler solution in terms of implemen- 

tation complexity exists. It turns out that it is possible to interchange the order of rank- 

ing operation with the frequency down - conversion, without any degradation in the per- 

formance ! Specifically, let 
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R(M+i)i = rank of Xi^ in {j^o, xn,  ; ^IM) 

RfM+i)i = rank of ^/.-Q in {y.-Q, yu.  , 2/iM } 

A complex vector of the scored single - sweep ranks is generated, 

Zi = Ui + jvi   ,   Ui = aM+i{R(M+i)i)   ,   Vi = aM+i{R(M+i)i) 

and the test statistic for the k"' frequency channel is taken as the DFT 

(6.6.9) 

(6.6.10) 

TAk) 
1 

vVj^i 
E ^i K ik ,    k=l,...., n (6.6.11) 

Notice that since only a single  rank   at each sweep (the index i) is needed, the 

ranking   complexity   is   linear   -    0{M),   as   the   z'''    rank   can   be   computed   from 

M 

R(M+i)i= YJ ^i^io-^ik)-   {^ri(^)} can be computed by a FFT algorithm, and with the 
k=0 

same simplifying assumptions of Chap. 5.3, the complexity of the FFT part of the detec- 

tor is O (5n log2n+4n ). Combining, the total complexity is O (2nM+5n loggn+4n ). 

This is in sharp contrast with the complexity of the previous structures, which is 

O {2nHog2n +10n^+4n) for one - sample ranking (with QUICKSORT algorithm), and 

even more for the two - sample detector. In App. I, we prove the following result on the 

asymptotic performance: 

Proposition 6.6.2 For na'^—^c', the limiting detection probability of the test statistic 

(6.6.11) is 

13 = E^Q \cAG^/\2iM^^, f ) I sin7rA/7rA | ,   V-21oga (6.6.12) 

where Q [■, ■] is Marcum's Q - function and 

G{3.M+1,  f ) 

1 M+l 12 

M+l ,% S  «M + l(0«(^/ 

1       M + l 

E«J+i(/) 
(6.6.13) 

M+l /=i 

As a consequence, all previous conclusions on maximin optimality remain valid. 
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Why does the DFT after ranking scheme work in this situation ? The key factor is 

the independence of the {R[M+i)i}, ^ each observation is ranked only with respect to 

its adjacent noise reference samples. Thus, when the SNR is large, when signal of fre- 

quency k is present, the {u,} and {w,-} oscillate, with a period corresponding to A:. Of 

course, all higher harmonics of k are present, due to the nonlinear operation a (i?,-(x.g)). 

The essence of the above result is asymptotic linearization, i.e., the first harmonic is the 

dominant term, and therefore the same loss factor of the DFT detector is obtained. The 

same can not be true for the other ranking structures, due to the strong dependency in 

the vector of ranks. 
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6.7 Finite sample simulation results 

6.7.1 The cases studied 

The performance under the hypothesis and the alternative was investigated by 

means of Monte-Carlo (MC) simulations, for various quadrature rank tests, under 

different noise situations. 

One- and two-sample tests have been simulated, with the Wilcoxon(\VX), normal 

scores according to Van der VVaerdenCVDW) version, and the robustified VDW (RVDW) 

score functions (see Sections 6.3.2-6.3.4.). In the following, the notation VDW(n,M) will 

designate a VDW test, with n main samples and nM noise-reference samples. For the 

RVDW test, a third number in the brackets will indicate the factor k at which the score 

function is limited, see Eq.(6.3.23). M = 0 will designate a one-sample test with a zero 

mean known signal sequence, according to Eq.(6.3.17). One-sample tests that are based 

in addition on the signs of the observations, were not studied. As discussed before, they 

are inferior under situations of non-symmetric noise p.d.f. At this time, we do not yet 

have results for single-sweep rank quadrature tests. 

For the detection performance, 8 different Gauss-Gauss noise mixtures 

(1-6)^(0, 1) + eiV(0, c^) have been simulated. They will be denoted /,• according to 

Table 6.7.1. As is evident from the table, all contaminated cases represent large, heavy 

tailed deviations from the nominal assumption, with the total noise power increased by 

10 to 20 dB. 

/,; -i Ci total noise variance in fdBl 
/i       0 0 0 
/2 01 30.04 10 
/3 1 9.54 10 
/4 1 31.48 20 

/s 2 6.78 10 
/e 2 22.27 20 
fr 4 4.85 10 
/« 4 15.76 20 

Table 6.7.1 The studied noise p.d.f.'s. 
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6.7.2 Performance under the null hypothesis 

Under the hypothesis, as long as all the observations are i.i.d., the various tests stu- 

died are distribution free. Therefore, a major simplification and saving in execution time 

was possible - instead of generating the original observables and ranking them, the ran- 

dom rank vector was generated directly, in the following manner. An integer in [1,..., n] 

was drawn with a uniform probability l/N, stored as i? i, and deleted from the original 

group of integers. At the second stage, Ro was drawn from the reduced group, indepen- 

dently of R 1, with a uniform probability 1/(A^-1), and so on. For the two-sample tests, 

only n « N=n{M+l) ranks were generated, as the other ranks are not required for 

computation of the test statistic. In this way, the probability distribution of the rank 

vector is as required by (6.2.2). From the vector of ranks, the various quadrature test 

statistics were generated according to (6.3.4) or (6.3.17), with the previously mentioned 

score functions. The known signal sequence was Sj=l for two - sample tests, and s,=l 

or -1 (equal number), according to (6.3.17) for one - sample tests. 

About 45 cpu minutes were required on the IBM/3081, with 7V=64, 210^ repeti- 

tions of the Monte - Carlo experiment, where all 3 detectors (WX, VDW, RVDW) simu- 

lated simultaneously on the same vector of ranks. On the DEC-VAX/750, about 35 cpu 

hours were required for the same simulation size ^ 

Figures 6.7.1-6.7.3 exhibit -\og{Pfa) vs. the threshold multiplier t, for tests of the 

form   Tyv  < tEQ{T^),  where   Tyy   is the quadrature statistic on  the  left hand side of 

either Eq.(6.3.4) or (6.3.17).   The RVDW curves are with k = 1.14.   EQ[T^) is calcu- 

lated from (6.2.11). In this way, a convenient universal comparison of Py^  for different 

A unique variant of the Importance - Sampling technique, suitable for the class of detectors stu- 
died here, was also developed. Although in one case it enabled us to obtain reliable thresholds down 
to P/»=10"° with only 20,000 repetitions, a 100 fold saving, many trial and error recursions were 
required until a satisfactory distorted probability measure was found to generate smooth estimates 
of P/„. The distorted measure depended on the sample size and score function, thus large human 
effort was needed to cover all the desired cases. Since computer resources have been readily avail- 
able, most of the thresholds were obtained from the simpler "brute - force" simulation. 
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sample sizes is possible, and convergence to the asymptotic result is measured by the dis- 

tance of the Monte- Carlo curves from the straight line. Explicitly, the normalizing fac- 

tor EQ{T]SI) is given by: 

2n^M{N+l)/12 -   WX, two - sample 

2n'(n+l)/l2 -   WX, one - sample 

2aJnM/{M+l) -  VDW and RVDW, two - sample 

2^n -   VDW and RVDW, one - sample 

where a^={l/N)Y] a,^{i).   Numerical values of a^ are given in Tables 6.1 and 6.3 of 
N 

E 
1=1 

Section 6.3.3. 

The figures show that with all score functions, for (n=16, M=0) there is a large 

deviation from the asymptotic prediction, when Pj^ <10"^. This is not surprising, since 

the rank statistics are bounded r.v.'s. For this case, it can be calculated that 

max{r„/£'o(r„)} is a number between 11 to 13 for the various score functions. Asymp- 

totically, i(Fy3=10"^)=13.8, thus the asymptotic theory can not predict correctly for 

this low level. The cases (32,2) and (64,0) essentially converge, while (32,0) and (16,2) are 

in between. With respect to the score function, RVDW converges faster, though the 

difference is small. By way of comparison, the SW-SSQME robust test with n = 16 

essentially converged to the asymptotic result, see Chapter 5.4. This is so because the M- 

or L- estimators are "closer" to sum of i.i.d. r.v.'s than the rank statistic. 

Thresholds for the P^ simulation were taken from these graphs, with some smooth- 

ing for Pj^^lCr^. In the P^ simulation, the sensitivity to deviation in t was measured. 

As result of the smoothing, we estimate the accuracy of the P^ simulation within 

±0.5dB for Pi^=l(r^ (i.e., the true SNR required to achieve given P^ is within this 

range ), and essentially error free for P^^ >10^. 
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Fig.6.7.1   False alarm probability, Wilcoxon quadrature rank tests. 
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Fig.6.7.2   False alarm probability, VDW quadrature rank tests. 
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Fig.6.7.3  False alarm probability, RVDW quadrature rank tests. 
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6.7.3 Probability of detection performance 

The simulations for detection probability implement directly the model (6.3.1) and 

some of the various detectors of Sections 6.3, 6.5 and 6.6. Independent in-phase and qua- 

drature noise r.v.'s with distributions / ^-f g are generated by a switching device, as in 

section 5.4. The in-pha^e and quadrature components of a Rayleigh signal with uniform 

phase are added to the noise, two rank vector are generated from the observations, and 

the test statistics are computed and compared to the previously found thresholds. For 

most of the results presented here, the signal frequency is assumed known and the 

"butterfly" transformation, Eq.(6.6.2), is not performed. Figs. 6.7.21-6.7.23 correspond to 

the Doppler rank detectors of Section 6.6.1. 

In a typical run, the 3 different detectors (\VX, VDW, RVDW) of equal (n,M) are 

simulated on the same observations, at 3 Pj^ levels (10"^, 10"^, 10"*^), and at 20 different 

SNR values. On the IBM/3081, about 4 cpu minutes were required, for n=32 and M=0, 

with 4 different noise distributions and 2500 Monte-Carlo (MC) repetitions. 

In all the following figures, P^ is plotted vs. the nominal integrated SNR na'^/2, 

where a'^/2 is the input SNR at the nominal component of the mixture. Thus, the 

actual input SNR is lower by a factor of 1-e+ec^. This normalization enables us to 

display all the results on the same range, and it will be seen that this is the dominant 

factor which determine the detectability, even for heavily tailed contaminations (recall 

the results of Section 6.4). In all figures, the curves marked (UMP,e=0) correspond to 

the UMP detector for narrowband slow fading Rayleigh signal in narrowband Gaussian 

noise of known variance; those marked (theory, / *(e)) are computed from the asymp- 

totic Pi at the least-favorable p.d.f. If no value of e is indicated, e=0.1 

In order to restrict the number of displayed results, we shall concentrate on the 

RVDW detector. Its performance as function of the sample and reference sizes will be 

shown, as well as the dependency on the noise distribution. For some cases, comparison 

with the other detector laws (WX, RVDW) will be given. 
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Fig. 6.7.4 display P^ curves of RVDW(k=1.14), with various (n,M), against Gaus- 

sian noise. In general, good agreement with the asymptotic result will be achieved if the 

curves are shifted to the right, from the (UMP,e=0) curve, by the dB amount 

corresponding to the efficacy loss, independent of P^ . It is seen that at P^^=10"^, all 

curves essentially converge in shape; the loss for (64,0) is 0.5-0.8 dB, compared to the 

efficacy loss of 0.44 dB, see Tbl. 6.8b. Also, the one-sample (16,0) detector is better than 

the two-sample (16,2) by about 1.5 dB, in agreement with M/{M+l)= 1,8 dB (see Eq. 

6.3.29). On the other hand, as expected, deviation from asymptotics is larger at 

Pfc,=lO-^. Here, the distribution of RVDW(16,0,1.14) is very different in shape from the 

asymptotic result, Eq. (6.3.6). For the other sample sizes, the shape of the asymptotic 

distribution is virtually obtained, with somewhat increased dB losses. In this case, the 

(16,2) detector is substantially better than the (16,0) detector (about 9 dB at ^^=0.8), 

contrary to the asymptotic result. The dependency of the RVDW detector on sample size 

at the / 3 distribution (see Table 6.7.1) is shown in Fig. 6.7.5. Here, agreement with the 

asymptotics is worse. For the other distributions, all the large e cases (/ 3-/ §) behaved 

similar to Fig. 6.7.5, while / 2 behaved very much like the Gaussian. Similar qualitative 

behavior was found with the VDW and WX detectors. In fact, our version of the one- 

sample WX detector, behaves very much like Hansen's narrowband detector [40] which 

utilizes also the signs of the observations. 

Roughly speaking, at Pf^ ^10"^, the performance agrees with the asymptotic pred- 

iction, with somewhat increased SNR losses, for n >32 and small e, for all score func- 

tions. For larger contaminations, the breakpoint at Pf^=10~^ is around n =32. At 

Pfn=10r , the (16,0) detectors also come close to the asymptotic prediction, if e<0.01. 

The RVDW(16,0,1.14) performance at Pf^ =10"'* against / j-/ 4 noises is shown in 

Fig. 6.7.6. Notice that the P^ degradation is ranked according to the total noise vari- 

ance, and for the noises with equal variance (/ 2, / 3) Pd is lower when e is larger, as 

could be expected.   We found it possible to improve somewhat the performance against 
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the larger contaminations by either of the following two modifications. In the first, by 

taking the RVDW(0.862) score function (it is asymptotically maximin robust when 

€=0.2) - i.e., by introducing harder limiter on the score function. In the second, we took 

a (l)=a (16)=0 - i.e., the influence of the extreme ranks was totally eliminated. As could 

be expected, this improvement also resulted in higher losses at the nominal and / 2 dis- 

tributions. Comparison between the different detector laws for the above parameters at 

/ 4 is shown in Fig. 6.7.7. At Prf=0.5, RVDW is better than WX by 1 dB, which in turn 

is better than VDW by 1.3 dB. These differences are even somewhat larger than the 

asymptotic ones, compare Table 6.8b with Tables 6.5 and 6.6. Very similar superiority of 

RVDW was obtained for / 3, with the diff'erence negligible for / 3. Notice that the VDW 

detector, which is the asymptotically optimal rank detector for Gaussian noise, is quite 

robust anyway, in agreement with the discussion of Section 6.4. This is in sharp contrast 

with the total breakdown of the parametric LMP detector under non Gaussian heavy 

tailed noise. 

The performance of RVDW(32,0,1.14) for all Pj^ levels against / ^-f 4 is shown in 

Figs. 6.7.8-9. Since convergence to the asymptotics is almost reached at Pf^=lQr'^, the 

curves are almost bounded by the theoretical P^ for the least-favorable distribution. The 

detection performance is worse at Pf^ <10~'*, though the detector is clearly robust. In 

Fig. 6.7.8 we also demonstrate that the Gaussian noise provides the most difficult detec- 

tion environment, among noises with equal variance. This is demonstrated by the dashed 

rightmost curves, which correspond to the UMP detector against narrowband Gaussian 

noise, with variance equal to that of / 2-/ 4. 

Fig. 6.7.10 corresponds to the two-sample RVDW(32,2,1.14) detector, where it is 

seen that convergence to the asymptotics is essentially reached also for Pr^=10~^. At 

P/a=10"^ the MC losses are 2.4 dB for / 1-/2, compared to 2.3 and 2.4 dB, respec- 

tively, from Table 6.8b (adding the 1.8 db loss appropriate to M/(jV/+l)). For f 3-f 4, 

the MC loss is 3.4 dB, and is identical with the efficacy loss. Notice that at P^^=10-^ 
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the two-sample detector is better than the equivalent one-sample detector, Fig. 6.7.9, 

which contradicts the asymptotic prediction. A possible explanation is that the two- 

sample detector, which use more observations, almost converges to the asymptotics at 

this low level, while the one-sample does not. 

Comparison of the different detector laws with (32,0) at / 3 noise is shown in Fig. 

6.7.11, and against the f ^ noise in Fig. 6.7.12. Again, the quality ranking is in accor- 

dance to asymptotic results, and the WX detector is only slightly inferior to the RVDW. 

For the large contamination of / 4, RVDW is superior to VDW by about 6 dB at 

P,=0.7. 

Fig. 6.7.13 depicts P^ of RVDW(32,0,.862), which is asymptotically maximin robust 

for €=0.2, against / 1, / 4-/ g noises. Recall e=0.2 for / 5-/ g. While the theoretical 

curve for the least favorable / *(0.2) does not bound the MC curves at the highly con- 

taminated noises, the performance can be considered satisfactory if the large increase in 

the input noise variance (10-20 dB) is accounted for. Comparison between different 

detector laws at (32,0,10"^) is shown in Figs. 6.7.14-6.7.16. At the Gaussian, as predicted 

by Tables 6.5 and 6.6, WX and VDW are essentially identical, and superior by about 0.8 

dB over RVDW(0.862), an excellent agreement with Table 6.8c. For / 5-/ g, however, 

RVDW is better than VDW by about 2.5 and 7 dB, respectively, at F^=0.7. WX's per- 

formance is in between. 

Fig. 6.7.17 corresponds to RVDW(64,0,1.14) against / 1-/4. Comparing it with 

RVDW(32,0,1.14), Fig. 6.7.9, we observe an improvement in convergence at Pj^=lO~^. 

Now, all Pj curves agree in shape, though the losses in / 3-/ 4 are still higher than the 

efficacy losses. 

Fig. 6.7.18 shows P^ of RVDW(64,0,.55), which is maximin robust for e=0.4. The 

loss at the Gaussian is increased by merely 0.5 dB when compared to the 

RVDW(64,0,1.14) detector, even less than the efficacy loss of Table 6.8e, but now the 

robustified detector is seen to handle reasonably well the noises / 7-/ g, with e=0.4. The 
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large advantage of RVDW over VDW at the heavily tailed noise / g, about 10 dB at 

Pj=0.6, is clearly observed in Fig. 6.7.20. Comparison of Fig. 6.7.19 with 6.7.20 also 

reveals that the heavier tailed noise has a rather limited influence on RVDW, but it 

causes a higher degradation in X'VX and VDW, in accordance with the asymptotic results; 

compare Tables 6.5, 6.6 with 6.8e. 

The performance of the one-sample rank Doppler RVDW(32,0,1.14) detector, Sec- 

tion 6.6.1, is exhibited in Figs. 6.7.21-6.7.23. Fig. 6.7.21 corresponds to a matched fre- 

quency case, A=0. Comparing it with Fig. 6.2.9, we observe slightly lower P^ at the 

Gaussian and / 2 noises, but some improvement for the heavier tailed / 3-/ 4 noises. 

Similar behavior was found with the WX and VDW detectors. These empirical results 

support the conjecture following Proposition 6.6.1. The improved performance with 

higher contaminations can be heuristically explained by the following: /j and Q^, which 

are weighted sums of two r.v.'s, have the same variance as i,- and t/,-, but their margi- 

nals have shorter tails as consequences of the convolution. 

The frequency mismatch cases are shown in Fig. 6.7.22 (A=0.25) and Fig. 6.7.23 

(A=0.5). The latter corresponds to the crossover frequency between adjacent "filters" in 

the Doppler-bank detector. Notice that the theoretical curves are shifted to the right 

from those of Fig. 6.7.21 by (sin7rA/7rA)^=0.9dB and 3.9 dB, respectively. Thus, they 

correspond to the linear DFT detector and to the asymptotic distribution of the rank 

Doppler RVDW detector (against /*), under identical frequency mismatch. At 

Pfa =10" , the MC curves are essentially shifted by the appropriate amount from those 

in Fig. 6.7.21, validating Prop. 6.6.1. At Pj^=lO~^, where convergence to the asymptot- 

ics is not yet reached, the losses are somewhat larger than the above values. Neverthe- 

less, as before, the RVDW detector was found superior over the WX and VDW at all 

heavy tailed noises by roughly the same amount as in previous cases. 
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6.7.4 Comparison with the robust SSQME detectors 

The lack of convergence of the RVDW(16,0) detector to the asymptotic prediction 

(recall Figs. 6.7.4-6.7.7) might seem to imply that it is inferior to the various robust 

SSQME detectors. However, a fair comparison must be based on the same number of 

noise reference vectors. Fig. 6.7.24 shows RVDW(16,4,1.14), and Fig. 6.7.25 corresponds 

to the SW-SSQME detector with 4 reference vectors and Q;=0.3 (it is Fig. 5.17 repeated). 

Notice that the / 4 noises are not the same in the two figures. It is seen that RVDW is 

superior to SW-SSQME, by about 2 dB at P^^=10-' and 8 dB at ^^^=10"^ These 

differences are in good agreement with the asymptotic prediction of Tables 6.4a-d: with 

M=4, the theoretical SNR difi'erence is 1.7 dB for {P^^^lO'-, 0.5<P^ <0.9), 8.4 dB for 

(P/,=10-^ Frf=0.5), and 8.7 dB for (P^„=10-^ ^^=0.9). Recall from Section 6.3.4 

that they have diff'erent limiting distributions, hence the SNR loss is function of P^. A 

detailed comparison of the integrated SNR {na^/2), required for given Pf^ and P^, is 

shown in Table 6.7.2. We thus conclude the RVDW is superior to the SW-SSQME. 

Pf^ Pd detector type /i f2 /3 

10-2 

0.5 
RVDW(16,4,1.14) 8.9 9.1 10.1 

SW-SSQME(16,4,0.3) 10.8 10.9 11.4 

0.9 
RVDW(16,4,1.14) 17.8 17.8 19.3 

SW-SSQME(16,4,0.3) 19.8 19.8 20.2 

lo-*^ 

0.5 
RVDW(16,4,1.14) 14.6 14.8 16.3 

SW-SSQME(16,4,0.3) 22.6 22.8 23.3 

0.9 
RVDW(16,4,1.14) 21.1 21.3 25.9 

SW-SSQME(16,4,0.3) 31.2 31.2 31.8 

Tbl. 6.7.2 Comparison of the ISNR, na^/2 in dB, between SW-SSQME 
and RVDW detectors. 
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Comparison between the SSQME test without reference samples, Fig. 5.20, and the 

RVDW(16,0,1.14) is less conclusive. At P^^^IQ-^ against / i-/2 noises, the perfor- 

mance is roughly the same. For / 3 at this level, the SSQME detector is better, where 

the SNR loss increases with Pj. At P^^=lOr^, the P^ curves are totally different. For 

/ 1 and / 2, the curves cross at about P^=0.4, where the SSQME is better for higher 

values and the difference increases with P^. At f 3, SSQME is substantially better for all 

P^ >0.05. At P^a=10'^, the situation is even more complicated, but in general, for 

P^ >0.9, the one-sample SSQME is always better and thus should be preferred, at least 

for the relatively restricted contaminations against which it was simulated (e<0.1). 
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Fig. 6.7.4 R\T)W test, Gaussian noise, convergence with n  and M. 
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Fig. 6.7.6 IS-RVDW test, / i to / 4 noises, n =16. 
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Fig. 6.7.8 1S-R\T)\V test, / i to / 4 noises, n =32. 
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Fig. 8.7.10 2S-RVDW test, / i to / 4 noises, n =32, M=2 
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Fig. 6.7.12 Comparison of IS-WX, \D\V and RVDW tests, / 4 mixture noise, n =32. 
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Fig. 6.7.14 Comparison of IS-'WOC, VDW and RVDW tests, Gaussian noise, n =32. 
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Fig. 8.7.15 Comparison of IS-NN'X, VDW and R\T)W tests, / 5 mixture noise, n =32. 

o 
D 

_JD 

cod 
CE 
CD 

CC 

t—r\j 
LLJ   ■-- 

F iS)   NOISE : o.S^(o,f]^o.i/^(o,G.}s'') 
NlSIGNflL SAMPLES) =32 

N*M REF. SAMPLES,H= 0 

NR=  2500 

PFfi=l 0»<*< 1-4 

^ / f 

00 S.OD 10.00 15.00 20.00 25.00 
INTEGRATED NOMINAL SNR IN DB 

30.OD 



- 165 

Fig. 6.7.16 Comparison of IS-WX, VDW and R\T)W tests, / g mixture noise, n =32. 
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Fig. 6.7.18 IS-RVDW test, f i, f 4, f 7 a^nd f g noises, n =64. 

^.00 5.0c 10.00 15.00 20.00 25   00 
INTEGRATED NOMINAL SNR IN DB 

30.00 

Fig. 6.7.19 Comparison of ISAVX, \T3W and R\T>\\' tests, / - mixture noise, n =64. 
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Fig. 6.7.20 Comparison of IS-WX, VDW and RVDW tests, / g mixture noise, n =64. 
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Fig. 6.7.22 IS-RVDW Doppler test, / i to / 4 noises, n =32, A/ =0.25. 
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Fig. 6.7.23 1S-R\T)W Doppler test, / 1 to / ^ noises, n =32, A/ =0.50. 
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Fig. 6.7.24 2S-RVDW test, / i to / 4 noises, n =16, Af =4 
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Fig. 6.7.25 SW-atrimmed test, / j to / 4 noises, n ^^16, M =4 
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6.8 Overview and Comparisons of Different Robust Detectors 

In Chapters 4 through 6, different algorithms for robust detection of fading nar- 

rowband signals have been developed. They vary in implementation, complexity and per- 

formance; thus, a comparison aniong them is appropriate. 

Clearly, the SSQME test of Chap. 4 is the least attractive, and should be used only 

when the variance of the nominal noise is stationary and known precisely. Even then, 

the slightly more complicated sliding-window (SW) version of Section 5.2 will perform 

better for P^ values around 0.5. 

With the other tests, none is uniformly best, and the choice would depend, mostly, 

on the environmental conditions. The major factors that have to be considered are the 

availability of noise reference samples (or the validity of the assumption that the target 

and reference samples are identically distributed under HQ), and how reUable is the 

assumption of independent samples. Since even under i.i.d. conditions the exact prefor- 

mance depends on many factors {n , M, the desired Pf^ and Pj , the maximum e), only 

qualitative conclusions will be drawn here. 

Complexity 

Implementation of the SW or one-sample (IS) tests with M-estimators require, in 

general, more operations than with L- or R- statistics. The complexity is roughly the 

same for the SW and the IS tests (either with the R- statistics or with the MAD scale 

estimator. Section 5.2), if the need for two orderings of the data in the IS-SSQME is not 

counted. The two-sample (2S) R-test requires considerably more computations, and is 

more sensitive than the IS R- (in an homogeneous environment) only when n <32. Sub- 

stantial reduction of complexity is possible with the single-sweep (SS) R- Doppler test 

(Section 6.6.2), which is the only one that preserves the O [n logn ) of the conventional 

periodogram (FFT) test. (Its small sample performance, though, has not been simulated 

yet). 



- 171 - 

Compatibility with non-homogeneous environment. 

The analysis in this thesis has been restricted to the cases where the target and 

reference samples are identically distributed. But, heuristic assessment can be made for 

spatial non-stationarity. In radar systems, the major sources for it are the following: a) 

The noise power varies as a function of the type of terrain from which the clutter echoes 

are reflected. This factor is less significant if the terrain is fairly uniform (e.g., non urban 

areas) and the range extent of the reference window is relatively short (say, 0.5 km). 

High range resolution (say, 50 meters), and reasonably small M (say, iV/ = 10) are 

sufficient. Moreover, in any reasonable coherent radar processing, clutter cancellation 

(i.e., whitening by means of notch filtering the clutter spectral peak) is performed prior 

to other operations. Properly designed, the clutter residues are at about the thermal and 

quantization noise levels, and consequently, the influence of non-stationarity is reduced. 

b) "Edges". Sharp increases in the clutter levels are encountered on the boundary of 

different terrains (e.g., when mountain ranges touch the seashore line). The major prob- 

lem with edges, is that they cause a false alarm whenever the window sweeps over the 

edge. Again, clutter prewhitening reduces this phenomena, c) An echo from another tar- 

get within the reference window, is common in dense target situations. Closely spaced 

targets (range separation smaller than M) cause a capture phenomena; even when the 

SNR is very large for both targets, and they are roughly equal, P^ is often limited to 

very small values. 

The various IS tests are clearly immune to any non-homogeneity, as no reference is 

used. The sensitivity of the IS R- test is lower by several dB's than that of the test with 

a-trimmed and MAD estimators when n <32 and e<0.1. However, this disadvantage is 

compensated by the DF-CFAR operation of the first for all sample sizes, and even for 

nonsymmetrical noise density. Moreover, for very large contaminations (say, e>0.3) and 

small n , the R- based IS test has better sensitivity. (Recall, however, that phase modu- 

lation of the transmitted pulse train is required for the R- test). 
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When is the SW test with a-trimmed estimator better? Its sensitivity in a homo- 

geneous environment is considerably better (for n =16, Pf^ <10-^, P^=0.9) provided 

M;^6. With this window size, however, it becomes more susceptible in a non- 

homogeneous environment to the above mentioned phenomena. When the type a) non- 

homogeneity is not a serious problem, it is relatively simple to protect the SW test 

against the undesired effects of the b) and c) types. Since the behavior of the robustified 

SW test in a contaminated noise has been shown to be very similar to that of the linear 

SW test in Gaussian noise (where the only difference is the modification of the effective 

SNR), even for small sample sizes, the same techniques that have been applied before are 

appropriate [19-20]. The cure against edges is to modify the adaptive threshold 

Wa{u, v) in Eq. (5.5) such that the sample averages of the leading and the trailing halfs 

of the window are computed, and then the greatest of the two is taken as the adaptive 

threshold, see [19], The capture problem caused by closely separated targets is treated 

by censoring from the reference window the cell of largest magnitude (or the m largest 

cells if m targets are expected to be within the window). Censoring and "Greatest-of" 

detection are easily combined to protect against both types b) and c) of non- 

homogeneity, see [20]. (The threshold multipHer t{M) is different in the combined algo- 

rithm, but it is possible to compute it with the techniques of [20]). 

Detection in dependent noise 

Throughout the thesis, the noise samples have been assumed to be statistically 

independent. Recently, several papers have treated robust detection for serially depen- 

dent noise samples. Poor [75], following Portnoy's[74] work on robust estimation with 

dependent noise, considered weak dependency resulting from a first order moving aver- 

age model, with parameter p ^ 0. His robust M-detector utilizes a linearly corrected ver- 

sion of Huber's soft limiter, and is capable of restoring the O [p] sensitivity loss which 

the usual M-detector suffers in the assumed moving average noise. Moustakides and Tho- 

mas [76] looked at a more general structure for dependency, namely at .^-mixing noise 
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sequences. They have proved a minimax result on the efficacy, and an upper bound on 

Fya , for the class of limiter-correlator detectors, and for (/"-mixing noise with an e-mix- 

ture marginal distribution. Their test utilizes a null- zone modification of Huber's limiter. 

Although these results are theoretically important and similar structures could be sought 

for the signal models in this thesis, it can be argued that this would not be the best 

direction to proceed. 

First, when dependency (in radar detection) is a problem, it usually is a strong 

dependency ^ It is well known that the optimal detector for dependent Gaussian noise 

first prewhitens the noise, and then correlates it with the known signal. Therefore, the 

above robust tests which are all based on memoryless operations, are far from being the 

globally optimal structures. (It is easy to demonstrate that a memoryless detection when 

the noise is Gaussian but strongly correlated, can cause huge degradation). Second, the 

modifications on the non-linearity require exact knowledge of some parameters in the 

dependency structure; in particular, the mixing parameters {7„ } in [76, Eq. (4)] are very 

difficult to determine. This precise knowledge seems to contradict the spirit and purpose 

of robust statistical processing. 

On an intuitive basis, it seems that the natural way to attack the problem is first 

to try to prewhiten the input noise (utilizing adaptive techniques of modern spectral esti- 

mation [78] if the autocorrelation is unknown), and then to apply one of the robust tests 

In radar detection, when the noise is dominated by ground or precipitation clutter, 
there is a very strong dependency among the input samples. The power spectrum (of the 
discrete autocorrelation) is usually composed of a relatively flat pedestal, representing the 
thermal noise and clutter echoes the are received through the antenna sidelobes, and a 
very high and narrow peak, that corresponds to the clutter reflections through the anten- 
na mainbeam. (When weather and other aerial clutter are present, they produce another 
high and somewhat wider spectral peak, that is shifted by the average Doppler frequency 
of the producing clouds from the ground velocity). Prewhitening of this colored spectra 
type is pretty simple in the ground clutter case; the center frequency of the clutter peak 
is tracked by phase lock loops, and its width is essentially known as it is related to the 
antennas beamwidth and its scan frequency. Thus, prewhitening is done by notch-flltering 
("MTI" in radar terminology). When aerial clutter is also present, it can be whitened by 
cascading the ground clutter canceller with another phase lock loop/notch filter combina- 
tion. Alternatively, modern adaptive techniques of spectral estimation can be used to esti- 
mate the spectrum and to control the parameters of the prewhitening filter [78]. 
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for independent noise. Since prewhitening is a reversible operation, an optimal procedure 

following it would not involve any loss, see [14, Part I, p. 289], Although white but non- 

Gaussian noise is not necessarily independent, this approach might be acceptable. (For 

estimation of a location parameter, Martin [77] has recently suggested that this is the 

"proper" approach to achieve efficiency under dependence; he has also pointed that this 

is the proper way to design robust tests). 

Now, there remains the question which of the structures that have been studied in 

this thesis is more appropriate. The prime objective is to achieve the DF-CFAR perfor- 

mance, for any dependence scheme. Under certain conditions, the robust M- and L- 

estimates as well as the R-statistics are expected to be asymptotically Gaussian distri- 

buted, but with a variance different from the i.i.d. case. The variance will depend (in 

addition to other factors) on the dependence structure. Proof for M-estimates with either 

a first order autoregression or a first order moving average scheme was given by Portnoy 

[74], see also [77]. Wolff et al. proved it for linear test statistics with any finite order 

autoregression, see [79] and the other references given there. 

From all the normalization structures studied in this thesis, the SW class of tests 

will assure DF-CFAR as long as the in-phase and quadrature statistics are asymptoti- 

cally Gaussian. Notice that the various R-tests are not CFAR anymore under depen- 

dence, but a SW version of the IS R-test is easy to construct. Simply, the fixed thres- 

hold in the IS version of Eq.(6.3.4) is replaced by the sample mean, taken over the refer- 

ence window, of the same quadrature statistic which is computed for the cell under test. 

"Studentizing" the 2S or SS rank tests is also possible, following the ideas in [79], but 

demands a substantial increase in the complexity. (Basically, an estimator of the vari- 

ance of the "main" test statistic is needed to set the threshold). Since even the i.i.d. 28- 

R test is more complex than the IS, and is more sensitive only for quite small sample 

sizes, it seems that the IS is a better choice, especially under dependence. Sacrificing the 

computation efficiency of the SS R- Doppler test, however, is a  disadvantage. 
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Although a deeper and thorough analysis of the suggested scheme is beyond the 

scope of this work, a simulation of a single example was carried to demonstrate the vali- 

dity. We assumed that following the prewhitening the noise can be modeled as a first 

order moving average process as in [75], where the i.i.d. samples from which the moving 

average noise is derived have an e- mixture distribution. The moving average parameter 

was p=0.1, and the test was the SW (72=16, M=4) with a-trimmed estimators. It was 

found that the tails of the distribution of the test statistic under HQ were somewhat 

longer; however, increasing the trimming ratio to a=OA kept the Pf^ very close to the 

asymptotic prediction. (See Fig. 6.7.26.) Actually, the curves are very similar to Fig. 5.9. 

The Pj curves also turned out to be very similar to those of Figs. 5.17-5.19, with the 

same insensitivity to the marginal distribution; see Fig. 6.7.27. Here, the dashed curves 

correspond to the computed P^ of the UMP test when the noise is a MA Gaussian with 

p=0.l; the other are for MA noises with the / 1- / 4 generating distributions of Section 

5.4. 

Naturally, the dependence causes a sensitivity loss compared to the i.i.d. case. 

This, however, is roughly identical with that suffered by the optimal detector for Gaus- 

sian noise with the same correlation matrix. The latter can be shown to multiply the 

SNR, A^/2, by  Y^Rif instead of by  n, where R   is the correlation matrix. For the 

assumed model, this loss is, with p=0.1 and n=16, 13.6/16=0.7 dB, and the dashed 

curves in Fig. 6.7.27 are shifted by this amount from the e=0 curves of Fig. 5.19. For 

the longer tailed distributions f 2- f z, there is an additional sensitivity loss of about 0.8 

- 1 dB. It is mostly attributed to the increased estimator's variance when a is raised 

from 0.3 to 0.4. 
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Fig. 6.7.26 Pj^ of a SW- a-trimmed test, under first order MA dependence. 
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7. ROBUST DIGITAL M-ARY COMMUNICATION RECEIVERS 

7.1 Introduction 

It appears that optimal digital communication theory is still mostly a theory of 

additive Gaussian noise. A survey of both classical and modern texts, cf. [65-68], does 

not reveal any significant results for non-Gaussian noises. This is true for both aspects of 

the communication problem: optimal demodulation and optimal signal selection. On the 

one hand, optimal digital demodulation is analytically tractable for arbitrary compli- 

cated signal sets received in additive colored Gaussian process. Moreover, expUcit 

expressions or tight bounds on the error probability exist, and it is therefore possible to 

find optimal signal sets. On the other hand, information theory supplies us with a closed 

form expression for the channel capacity of the additive white Gaussian noise channel 

(AWGN), against which the efficiency of any signaling scheme can be compared. 

The tractability of both aspects of the problem is attributed to the remarkable pro- 

b 

party of a Gaussian random process n{t): any integral of the form jf {t)n{t)dt   is a 
a 

Gaussian random variable. Hence, infinite dimensional decision problems are made 

countable by such techniques as the Karhunen-Loe've expansion, projection on the basis 

set spanned by the signal set to obtain sufficient statistics, or whitening augmented by a 

reversibility argument. Non-Gaussian processes, on the other hand, pose formidable 

difficulties. For the optimal detection part of the problem, the receiver should maximize 

the posterior probability that a signal s^[t) has been transmitted. However, for cases of 

prime interest we do not have close form expressions for the posteriors. Consequently, 

the optimal signal set for given constraints can not be found. While numerical algo- 

rithms for computation of the channel capacity of continuous channels and source alpha- 

bets have been derived [67], we do not know of any closed form expressions for non- 

Gaussian cases. Hence, there is no baseUne against which sub-optimal receivers could be 

compared. 
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As in binary hypothesis testing, we would expect that various communication 

environments consist of non-Gaussian noises. These include, to name a few: RFI or jam- 

ming in radio communication, other non-synchronized messages in multiple-access chan- 

nels, under-water communication, etc. We thus might wonder why, in contrast to binary 

hypothesis problems, robust digital communication has not been studied so far. One 

explanation is the previously mentioned analytical difficulties. The second is that, 

perhaps, optimal communication is not the focus in practice. For instance, SNR's of 70 

dB are typical in the American telephone network. Yet another explanation arises from 

information theory - for fixed signal energy and additive noise power, the capacity is the 

lowest for the AWGN channel - see Theorem 7.4.3. in [66]. Hence, if someone compares 

the performance of a given receiver only against the input SNR he would not be 

alarmed. As a consequence of Shannon's coding theorem, however, we know he could 

have done better had he utilized some knowledge on the non-Gaussian distribution (this 

will be demonstrated in the sequel). Finally, some ad-hoc devices in the receiver, which 

usually are not designed as an outcome of statistical analysis (e.g., squelch circuitry in 

FM receivers, Dolby in audio tape decks, etc.) might combat successfully some of the 

non-Gaussian interferences. 

In this chapter we attempt a modest first step towards robust digital communica- 

tion for additive, white non-Gaussian (AWNGN) channels. To circumvent the analytical 

difficulties we study only the discrete time problem, and we limit the scope to the sim- 

plest modification of the discrete time white Gaussian process, i.e., we modify only the 

first order distribution. Within this framework, we show that there is a close relation- 

ship to the problem of robust estimation of a location parameter by means of M- 

estimators. Further, by keeping the structure of the bank of correlators receiver, but 

replacing the correlators by limiter-correlators, a minimax error-probability is obtained 

when the limiter is Huber's soft limiter function. This is true for an arbitrary signal set. 

Similar  results   are   obtained   for   noncoherent   communication,   where   the   receiver   is 
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robustified by inserting limiter-correlators in the in-phase and quadrature channels of the 

quadrature square-law receiver. 

When it is desired to reduce the sample size, we propose a similar structure with 

generalized M-estimators replacing the limiter-correlators. Specific important cases 

(PAM, PSK and QAM) yield identical asymptotic results. The same is shown true for 

the orthogonal and uniform-distance signal sets, provided we replace the one-dimensional 

M-estimators by the solutions of an equivalent robust regression problem. Based on our 

Monte-Carlo experience with the binary problems in previous chapters, we suspect that 

the latter implementation is superior to the first. 

7.2 Robust M-Ary Coherent Receivers: Limiter-Correlator Implementation 

In the M-ary digital communication problem, at each time interval iG[0, T], the 

transmitter sends one of the signals As^(i), corresponding to one of equally probable M 

message symbols m 6{0,1,...,M}. The signals are characterized by their energies 6, ^ and 

the normalized inner products /j,y 

T 

Jsi{t)sj{t)dt =Ty/e~e~Pij (7.1) 
0 

where ^o,-,- = 1 and | p^j | <1. Except for pulse amplitude modulation (PAA^I), we 

assume €i^€\fi. 

The coherently received signal at the output of an AWNGN waveform channel is 

r (0 = ^5^(0   +   ^(0 (7.2) 

where w{t) is a band-limited, zero-mean, wide-sense stationary (w.s.s.) random process, 

not necessarily Gaussian, with spectral density S^^{f ) = CNQ/2 for | / | <B and 0 

otherwise. We consider the "nominal" power spectral density NQ/2 as known, but C>0 

as unknown. In particular, we will be interested in heavily tailed marginal noise distribu- 

In our notation, s,[t) and e, are dimensionless. The physical energy is thus given by A'^Te,. 
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tions, for which C»l (C=l for Gaussian ). We will take n=2BT»l; this ensures 

that the received signal is essentially undistorted as well as that the noise process 

approaches a white noise in the limit. 

In order to avoid some very tough analytical difficulties that are inherent to any 

detection problem with continuous time, non-Gaussian processes, we will limit our study 

only to discrete time processing  ^. 

The received waveform is time sampled at the Nyquist rate 2B ^1/At, yielding 

ri=r{i At), Wi=w{iAt) and s^i=Srr,{i At), i =l,....,n =2BT . Obviously, the noise 

samples are uncorrelated. We make the following crucial assumption on the class of noise 

processes {^(0} ^° be considered hereafter: 

//   the   {w,} are   uncorrrelated  , they   are   statistically  independent (p) 

It is justified to ask if the postulated class contain any other process beside the Gaus- 

sian. This question has been positively answered by Martin and Schwartz [69]. They 

have constructed the so called quasi-mixture Gaussian process (QMGP), which possess 

the above property if the quasi-mixture is generated from two independent white Gaus- 

sian processes; the marginal distributions are simply e-mixtures of two Gaussian 

p.d.f.'s. ^ While the definition and construction of the QMGP might seem somewhat 

artificial and non physical, any other definition of a w.s.s. non-Gaussian process that 

does not obey (p) is bound to involve formidable analytical difficulties. Hence, even 

though a more realistic characterization might be desired, the one we have postulated 

~5 '■  Admittedly, there are two major drawbacks,   a) In some cases, it is simpler and more economical 
to implement the digital communication receiver with analog processing, e.g., the matched filter in 
a PSK receiver is commonly implemented by multiplying (with diodes) the input signal by a 
sinusoid at the carrier frequency, and then integrating the product by a capacitor-operational 
amplifier circuit, b) Even when the number of samples is very large, the performance might be in- 
ferior to that achieved by the optimal analog processing. Although this is not the case with Gaus- 
sian noise and the bank of matched filters receiver, we can not claim it in general without a deeper 
analysis. 

While it does not seem possible to realize a continuous QMGP exactly, arbitrary close approxi- 
mations can be realized by switching between two independent Gaussian processes, where the 
switching rule is based on a nearly white Poisson process. At each time increment of the Poisson 
process, the first Gaussian process is selected with probability e, see [69]. 
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will serve  at  least  as  a  modest  first step  towards robustification  of digital receivers 

against deviations from the predominant AWGN channel assumption. 

Without loss of generality, the receiver first normalizes the input by the square root 

of the "nominal" power: x^^^r^ /{NQB)^' . We now have a multiple-hypothesis detec- 

tion problem, where on the m'    hypothesis 

Hm ■    2;„i = a„ s^,- + n,-   ,i=l,....,n     m=l,....,M (7.3) 

Here,  a^^A /{NQBY'^^0 {n~^'^), and  the  n,-   are i.i.d., zero-mean, with variance  C 

and a symmetric p.d.f. f . As B and n ^oo, (7.1) is replaced by 

1- 1 /  
lim — Y, Smi Sii   =  V ^m ^iPlm (7.4) 

We restrict our attention to a class of decision rules which capture the structure of 

the (discrete time) optimal receiver for the AWGN channel, but we replace the linear 

correlation by a nonlinear one. Namely, we decide in favor of H^ if d^ ==     max    i,-, 
ie{i,..,M} 

1   " 
dm   = —E^{^m)smi    m =l,...,M (7.5) 

and /(■) satisfies the same regularity conditions as in Chapter 4. Heuristically, it seems 

plausible that if /(•) is some sort of a limiter, the effect of heavy tailed noise will be 

reduced, but some performance loss will be incurred if the noise is Gaussian. We will 

show that if the marginal noise p.d.f. / belongs to a class of distributions for which a 

minimax M-estimator of location exists, then a minimax result on the error probability is 

obtained within this class of decision rules. 

Notice that for any noise process, the optimal Bayesian receiver computes posterior probabilities 
and decides in favor of the largest, but we can not claim that the decision variables of Eq. (7.5) are 
proportional to a monotonic function of the posteriors of any noise process, even in discrete time 
and asymptotically. However, if we measure the performance only with respect to the total input 
SNR, it will be seen that the performance is better than in the Gaussian case. Thus, the sub- 
optimal class which requires only slight increase in the implementation complexity, is quite ade- 
quate. 
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We now turn to the asymptotic performance analysis. When n—)-oo, the {dj„} are 

jointly Gaussian distributed; this can be shown for bounded /(•) by invoking 

LiapounofT's version of the central limit theorem (notice that the summands are func- 

tions of n , hence the simple CLT does not hold), see [64, p 201]. For linear /(•), the 

proof is elementary. Hence, computation of means and covariances is sufficient for the 

error probability. With tedious but straightforward computation it can be shown that: 

lim  Ein^'d^ \H,) = A{^Y/'E^{l')ep^, (7.6) 
n->oo VVQ 

lim Cov{n'^'d^, n'/% \H,) = E^ [l^)ep^, (7.7) 
n -♦00 

lim Var [n ^I'^d^ \ H,,) = E. {l')e ^ a^ (7.8) 
n —♦00 

Since the signal amplitude is always 0{n'^'^), the above expressions are obtained by 

means of a Taylor series expansion. These expressions are similar to the corresponding 

ones for the matched-filter/Gaussian noise case, except for the E{1') and E{l'^) terms. 

Clearly, calculation of the error probabilities is unchanged if the decision variables are 

normalized to N(o, [p^i ]) according to 

n'/'di-E{n'/'d,\H,) 
di -* Vi =   

Thus, the error probability is Fg {k )=l-P^ [k ), where 

P,(^) = Fr{c/,=max rf, \ H,) = Pr {\1i, Vi<v,+P'/%1, f ){1-Pi,)\ H,}   (7.9) 

In that way, we get the same well known expressions for the error probability, for any 

signal set {5^(()}, but the signal to noise energy ratio (i.e., the factor €/NQ in Chapters 

7-9 of [65]), is replaced by P(/, / ), 

.2fi'\ 
P{l,n=^-^G{l,J)    ,    G{l,f)^-^ (7.10) 

We see that the error performance in the multiple hypothesis detection problem for the 

AWNGN channel is again characterized by the functional G [I, f ), and all the results 
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on robust estimation of a location parameter by an M-estimator apply here as well. 

From Eq.(7.9), it is seen that, for arbitrary signal set, the probability of correct decision 

is a monotonic increasing function of P{I, f )■ To show this, denote P^^^=X, and 

notice that if X2>Xi, the event A={\f i, Vj <v<.+Xi(l-/9,-j.) \Hj^, Vj^} is included in 

B = {V i, Vi <Vk +Xn{l-pik )\Hk, v^},   smce   l^Pi^ >0.   Therefore   Pr {A }<Pr [B }, 

and from (7.9) P^[X{)=j Pr {A ]dF{vj^)<P^{X2)- Consequently, whenever a minimax 

relation on G {I, f ) exist in some class {/€L} and {/ GP}, it is translated into a 

minimax relation within the above class of decision rules based on the limiter-correlators 

(7.5). 

For the matched filters receiver, l{x)=x and G[l, f )^1/Ef (x'')=l/C, i.e., the 

inverse of the total noise power density. Thus, if one only measures the noise power at 

the signal bandwidth and does not have any knowledge of the shape of the noise distri- 

bution, the error probability will be exactly what one would have expected from the clas- 

sical theory; hence, one would not have any reason to be alarmed. This might be an 

explanation why communication in a non-Gaussian noise has not received any attention 

so far. However, it is known that for all distributions of equal variance, the lowest 

G(/, / ) is achieved by the Gaussian, and the pair of the Gaussian distribution and a 

linear /(•) constitute a saddle-point, see [3, p. 83]. As a consequence of the monotonicity 

of the error probability with respect to the effective signal to noise ratio P , the perfor- 

mance of the matched filters receiver is a lower bound; any other receiver which utilizes 

some knowledge on the deviation from Gaussianity (within the postulated class of 

AWNGN processes) will perform better. In particular, if we assume that the marginals 

belong to a nominally Gaussian e-mixture family, / {x)^l-e)g {x)+eh{x), the decision 

rule based on the limiter-correlator (7.5) with Huber's function lo{x; -K, K) of Eq. (4.9) 

is the minimax solution 

When k =0, rf^ correlates the signal with the sign of the observations. This scheme was con- 
sidered by Beaulieu and others [72], in the binary case, for reasons of reducing the number of multi- 
plications. 
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Let us write 

^('o, / ) = "j^-^^i'o, f)   ,    C = (1-6) + ea^- 

where a^ is the variance of the contaminating density. Thus, the first factor in P{lo, f ) 

is the true signal to total noise energy ratio, while the second factor represents a gain 

factor which increases the effective SNR P for non-Gaussian noise. For fixed e, G{IQ, f ) 

is bounded, but C can be arbitrary large when the contaminating noise is heavy tailed. 

Therefore, the performance improvement with respect to the matched filters receiver and 

Gaussian noise of equal power(C) can be arbitrary large! As an example, when h is also 

Gaussian and e=0.1, gains of 1.4, 8.8 and 17.9 dB are obtained with (7^=3, 10 and 30, 

respectively. {G{IQ, f ) are given by the inverse of the variances in Table 5.1). 

The last conclusion can also be interpreted by an information-theoretic viewpoint: 

with the postulated AWNGN channel, essentially error-free communication can be 

achieved at transmission rates much higher than the channel capacity of the equivalent 

AWGN channel. Consider, for example, an orthogonal signal set - p,.y=5jy. If the noise 

density / is known, the optimal performance for the assumed class of decision rules is 

obtained for /(/ )=-/ '// , and then G{l{f ), / )=/(/ ), Fisher's information. The 

data transmission rate is R ^logoM/T and S=A'^e is the average signal power. Paral- 

leling the derivation of [65, Chap. 8.4], we obtain that the limit of the error probability 

for large M is 

0    ir    -^'if)  >  i.2 
lim P, = 

M—»oo 

Since 5/(A''oln2) is the capacity of the infinite bandwidth AWGN channel, and since for 

all distributions of fixed variance /(/ ) is minimized by the Gaussian, the previous claim 

is clear.    As a consequence of Shannon's coding theorem, this derivation shows, in fact. 

Indeed, theorem 7.4.3  of Gallager [66] states that for a given noise variance, and for constrained 
signal energy, Gaussian noise is the worst additive noise from a capacity viewpoint. 
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that    the    capacity    of    the    postulated    AWNGN   channel    is    lower    bounded    by 

/(/)-5/(iVoIn2)  \ 

As a final comment, let us note that if the non-Gaussian noise is indeed a QMGP, 

identical results can be shown for the continuous time version of (7.5). The derivation 

parallels that of Martin [70], based on theorems of Rosenblatt [71] on the asymptotic 

normality of some integral functionals of non-Gaussian processes. 

7.3  Robust M-ary  Coherent  receivers: Implementation  with  generalized  M- 

estimators 

If the channel is severely band limited, or if it is desired to reduce the number of 

computations in a digital implementation so that samples are taken at a lower rate, n 

might not be very large, and the input SNR needed for small error probabilities is bound 

to be relatively high. In this case the limiter-correlator structure might cause perfor- 

mance losses. Motivated by the very good small sample performance of M-estimators, 

and observing that df., when properly normalized by the energy, is an unbiased estima- 

tor of the signal, it seems appropriate to generate the decision variables as generalized 

M-estimators 

4 =   arg   {T.Sk,l[xi-Skidk)  =  0}       k = I, M (7.12) 

Unfortunately, even the asymptotic performance is difficult to compute, for an arbitrary 

' The direct strategy to compute capacity for an arbitrary additive channel was derived in [66], If 
X is the channel's input and y its output, the constraint on the input energy is translated into a 
constraint on the output energy. Then, finding the capacity is reduced to maximizing the output 
entropy H[Y), with respect to Pyiy), for the given constraint; afterwards, it is needed to find a 
distribution Pxi^) yielding the maximizing Pyiy)- Unfortunately, the maximizing Pyiv) is found 
to be Gaussian, therefore this approach yields results only for an additive Gaussian noise. 
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signal set.   Indeed, when H^ is true, 4 is asymptotically Gaussian with 

lim Ef {dk\H,) = a„e   ,    lim Var (4 I H,) =     ^    ^^ ^^"^ 

This can be shown to be a special case of robust M-estimation of a one dimensional 

regression problem, for which asymptotic normality has been proven by Huber, see [3]. 

Moreover, it can be shown that each of the d^,mj^k converge in probability to 

«n ^Pmk ■ However, it is difficult to show that the vector of decision variables is jointly 

normal with covariances corresponding to Eq. (7.7). Presumably, one might parallel the 

derivation following Eq. (D.ll) of App. D. Furthermore, to reduce the complexity, a "one 

- step " implementation might be quite efficient, as has been shown in Chap. 5 for the 

simpler binary problem with a constant signal. The "one - step" decision variables are 

the first iteration of Newton's method, computed according to 

d,' = 4° + i^i  (7.13) t=i  

n 

Yl^kil'{xi-Skid,, , 
»=i 

where dj^'^ is given by (7.5). 

For several particular cases which are widely applied, it is possible to exhibit the 

asymptotic performance; these are the PAM, PSK and QAIvI signaling schemes. 

Robust PAM 

Here s^,-=v4^Sj, A^=2m-1-M. Of course, the energies are not equal. Now, as in 

the classical Gaussian case, only a single decision variable is needed 

n 

(f = arg { X; Si I [xi -dsi) = 0 } (7.14) 

and the decision is made in favor of one of the M possible amplitude levels a„ A^ which 

is nearest to d (Of course, for PAM the channel attenuation on the transmitted signal 

must   be  precisely   known).   Clearly,   the  error  performance  is  closely   related   to  the 
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problem of estimating the one dimensional regression parameter a„ A^ for the observa- 

tions 2:,-=a„A^s,-+n,-. As n-*co, n^^\d~a^A^) is zero mean Gaussian with variance 

V=Ef {I )/eEf{l'). Hence, as in the Gaussian case (cf. [68]), the error probability is 

given by P, = 2{{M-1)/M)^-2P {I, f fl'^). As before, monotonicity with respect to 

the generalized SNR leads to the previous conclusions on robustness. 

Robust PSK and QAM 

For PSK, the transmitted signal is 

.      j 27r(m -1) 

5^(0 = Re[C/^e^''"^'']    ,     U^=e      ''        ,m=l,....M (7.15) 

As usual for PSK, we assume that the noise w{t) is a narrowband bandpass process 

around the carrier /,, i.e., S^{f )=CNJ2 for | / ±f, \ <B /2 and zero otherwise, cf, 

[68]. We also assume /, >B/2»l/2T so that w{t) can be represented by its in-phase 

and quadrature low-pass processes. Following demodulation by the in-phase and quadra- 

ture mixers, amplitude normalization and time sampling, the analog to Eq. (7.-3) is 

Hm ■■ ^ni = a„Re{U^) + n,i       y„i = a„Im{U„) + n,i    i=l, n=BT (7.16) 

With the previous assumptions, the marginal distributions of the {?2„-, n,i } are identical, 

and all the r.v.'s are uncorrelated. We assume the analog for (p), which in this case 

requires also that if n„- is uncorrelated with n^,-, they are statistically independent. 

Actually, similar to the derivation of App. D, it suffices to require that the distribution 

of n^i and n^i is circularly symmetric. Now, it is necessary to compute two M-estimators 

as decision variables 

dx = arg {  E /(x,--rfj = 0 }    ,/j^ = arg {  E l{yi-dy) = 0 } (7.17) 

From them, an estimate of the phase is computed as 0=^11'^d^ /d^, and a decision in 

favor of H„ is made if 9^ =2ir{m -\)/M is nearest to 6. d^ and dy are asymptotically 

jointly Gaussian and independent, with common variance Ef[l-)/nEf[l'). Hence, the 
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expression for the error probability is identical to the Gaussian case where the SNR is 

replaced hy P {I, f ), with 6=1. Consequently, the previous conclusions on robustness 

are valid. Moreover, one-step versions of (7.17) have identical asymptotic distribution; 

hence, the simplest implementation has the identical robustness property. Furthermore, 

smce for PSK the equivalent lowpass signal is constant, identical results are obtained 

(with reduced computation load) if d^ and dy are replaced by a-trimmed estimators, as 

in Chap. 5.2. 

It is well known that the bandwidth efficiency of the PAIVl and PSK systems is 

penalized by the required high SNR, and that a combination of multiple signal ampli- 

tudes and phases in quadrature amplitude modulation (QAJS/f) reduces the required SNR 

substantially. Since in QAM s„{t)^Re [{A„+jB„)exp{j 27rf, t)], a receiver which 

decides in favor of the point (>i„ ,B^ ) which has the shortest Euclidean distance to 

[dx ,dy) of (7.17), will have the same robustness properties as the robust PSK receiver. 

Orthogonal and equal-distance signals 

Let us rewrite Eq. (7.3) as 

M 

•'•n: «n    E^mSmi+"i        1=1,■■■.n (7.18) 
m=l 

In this way, we can cast the problem as a regression problem, where we first estimate the 

vector of unknown parameters (?'=(^i,....,(9^) and then we decide H^. if 9\ is the larg- 

est. The motivation for this modification is that we can utilize some results from the 

theory of robust regression; namely, the solution of the system 

ri M 

EM^oi^i-J^Ksmi)  =   0 p=l, ,M (7.19) 
J=l m=l 

is the minimax optimal solution, see [3]. On the negative side, in general the coupled 

equations might require more computations than the solution of the M one dimensional 

problems (7.12). The second disadvantage is that we do not utilize the prior knowledge 
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on Q (i.e., one of the components is 1 and the other are 0); this might result in perfor- 

mance losses. It turns out that for the two important cases of orthogonal and uniform- 

distance signal sets ( Pij=p for iy^j, -1/(M-1)</)<1), no losses are incurred. To show 

this let us define the S   matrix whose  m'''   column  is the signal vector on  the m 

hypothesis (s^i, 5„„ )', and H =S{S^ Sy^S^ . From (7.4), S^ S=neRi, where R^  is 

the matrix with elements Pij. Huber's condition for joint asymptotic normality of the 

solutions of (7.19) is that /j =max//',-,--+ 0 as n —^ oo.   For the uniform-distance set, it 
i 

can be shown that R^^ has equal diagonal terms {{M-2)p+l)/D , 

D =l+p{M-2)-p-{M-l)>0, and equal ofi"-diagonal terms -p/D . Thus, it can be shown 

that, with G^maxs,-, 

nCD neO 

This is also valid for the orthogonal set where p=0. Hence, if M is not too large, the 

condition is satisfied, the solutions of (7.19) converge in probability to the true values, 

and has the covariance matrix 

From (7.6) to (7.8), it is seen that asymptotically, R^'O converges in probability to d, 

where d is the vector of the limiter-correlators (7.5). Since the following equality con- 

verges in probability, 

di-dj ={l-Pij){ei-e^)+   E  ^y{Pa-Py/) 

we have   for both the uniform-distance and orthogonal sets, 

(7.21) 

P,{d\Hk) = Pr {max(4 -d^ )>0 \H^}^Pr {m^^[l-p){d^ -9, )>0 \ H^} = P,{9 \ H^) 

A simple counter-example shows that pij=p is also necessary for (7.21). Note that the 
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above derivation is not valid for the simplex  set, for which p=-l/[M-l) and   R^   is 

singular. 

In conclusion, for most cases of interest, it has been shown that generating the deci- 

sion variables from one form or another of M-estimation, leads to identical asymptotic 

error probability and robustness as of the limiter- correlator implementation. We conjec- 

ture superiority of the first for small sample sizes and small desired error probabilities; 

this, however must be confirmed by a simulation study, preferably with real non- 

Gaussian data. 

7.4 Robust M-ary noncoherent communication 

Similar results can be obtained for noncoherent communication, where no attempt 

is made to track the phase shift introduced by the channel 0. The only difference is that 

we have to consider the in-phase and quadrature components of the received signal. We 

demonstrate the structure for limiter- correlator implementation, but some of the deriva- 

tions of Section 7.3 can also be extended. 

Let the transmitted signal be s^[t)=Re[G^{t)%x^[j 2Trf, t)\, C^{t)= 

^m (^ hJBm {t). The signal energy is given here by 

r T 

Js^{t)dt ^^J\C„[t)\''dt =eT (7.22) 
0 -^  0 

where we have assumed, as usual, /^ r»l so that double frequency terms could be 

omitted. The following inner-products are defined 

f T 

ReJC^{t)C;{t)dt = J[A^{t)Ai{t)+B„it)Bi{t)\dt =2eTp^, (7.23) 
0 0 
T T 

lmJC^{t)CiXt)dt = J[A^{t)Bi{t)-B,„{t)A,{t)]dt = 26 7 p^^ (7.24) 
0 0 

where the same approximation leading to (7.22) has been used. The received signal under 

the m '    hypothesis is 
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rit) = Re[{AC^{t)e^'+n,{t)-jn,{t))e^'''^'']     0< t  <T (7.25) 

where n,{t) and n,{t) are the in-phase and quadrature components of the narrowband 

bandpass noise process, with spectra S„^{f )=S„^{f )=CNo/2 for | / \ <B/2 and zero 

otherwise. For validity of the noise representation and for undistorted reception of the 

signal, the standard assumption f ^ >B /2»1/T is made. 

For the AWGN channel, the optimal receiver decides in favor of the largest d^ , 

where here d^ is the output of a quadrature matched filter, cf. [65]. The following 

representation of d^ , which can be shown to be identical to the more familiar expres- 

sions of [65], is more convenient for robust modification. 

T 

■       dm=U^+V^       U^ + jV^ = jC^{t)[X{t)+jY{t)]dt (7.26) 
0 

where 

X(0 = [2r(Ocos(27r/,OW     ^(0 = [2r (Osin(27r/, OW (7.27) 

and the symbol {■]LPF denotes the operation of passing the argument through an ideal 

lowpass filter with unity gain and cutoff frequency 5/2. Proceeding as in Section 7.2, 

the normalized in-phase and quadrature time samples on the m"' hypothesis are given 

by 

(7.28) 

The assumptions on [n^i, n^y } are identical with those made following Eq. (7.16). As a 

robustification of the quadrature matched filter for the AWNGN channel, we introduce 

as before non-linear limiter-correlators. Namely, we still take d^=U^-\-V^ to get rid of 

the unknown phase, but now (7.26) is replaced by 

^m   = ^ E [Ami I {X„i )+Bmi I [Vni )]     ^m   ^ " S [-B^i I (x„,- )+A^i I {y„i )] 

(7.29) 
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Following similar arguments as before, {U^ , V^} are asymptotically jointly Gaussian. 

After a tedious but straightforward Taylor expansion, the following moments are 

obtained : 

lim   E{n'/'U^ \H,) = 2A {^Y^'CE^ {lTPmk^os9 + /^,sin^] (7.30) 

lim   E{n'/'V^ \H,) = 2A{^y/'eE^{l')[p^,sme-p~^,cosd] (7.31) 

(7.32) 

\\mCov{n'f'U^,ny% | F,) =   lim Cov{n'/'V^ , n'/% \ H,) = 2eE^ {l')p^^ 
n —►oo n —►00 

lim Cov (n i/^C/^ , n V^^^ \ H,,) = 2eEf {l^)p^i (7.33) 
n —»co 

The variances are obtained by substituting ^^^=1. For Eqs. (7.32 -33), it suffices to 

assume that {rJcii^ct} have a circularly symmetric distribution, or that they are 

independent. Comparing Eqs. (7.30 - 33) with the corresponding terms for the linear 

matched filters and Gaussian noise, cf. [65, Chaps. 7.2 and 8.10], we observe that they 

are identical, provided we multiply C/^ and V^ by {n /{NQEJ (/^)))^/^, and we modify 

the SNR to P {I, f ) according to (7.10). Hence, we arrive at the previous conclusions 

on robustness, provided the error probability of the optimal noncoherent receiver for the 

AWGN channel is a monotonic decreasing function of the SNR. While this expected 

behavior is apparent from all the performance curves given in the literature, it is not a 

simple matter to prove it from the various complicated error functions for noncoherent 

M-ary demodulation. (Unfortunately, the ordering of decision variables in the coherent 

case, that is evident in (7.9), is not preserved here. This is due to the presence of the 

unknown phase. Consequently, a general proof of monotonicity has not been found). An 

exception is the binary case with orthogonal signals, Pmi^^Pmi^^ (they are the optimal 

for noncoherent binary communication) for which the error probability is given by 

Pj =(l/2)exp(-e/(2A''o)). The generalization for M-ary orthogonal signals, which are 

believed to be the optimal, is given in App. J. 
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Appendix   A 

Small Sample Performance of the Sign Detector 

The sign detector (SD) is the simplest and probably the most popular non- 

parametric detector for a deterministic lowpass signal in noise with uncertain symmetri- 

cal density. Under several assumptions, it is known to be the UMP detector [32] or the 

minimax LORD detector [5] for those particular situations. Under the asymptotic weak- 

signal/large-sample {n-^oo,H^-^HQ) assumptions, the ARE with respect to the linear 

detector (LD) at noise density / (•) is ARESD,LD ^4((T/ (O))^. This is 0.637 for Gaussian 

noise, 2 for Laplace (double exponential) noise and in between for many other densities. 

Hence, the SD is generally considered to be very efficient for many situations of uncer- 

tainty. 

Small sample analysis reveals that it may not perform as well, as the fine details of 

the actual small sample-size error probabilities are lost in the asymptotic analysis. The 

sign test is given by: 

i>t       ,        H^ 

r(x)=   E"(:r,) =t       ,        Hi with probability c (A.l] 

'    ^ <t       ,        H 0 

where u(-) is the unity step function. Notice that a randomized test is required since 

r(x) is a discrete binomially distributed r.v. Assuming symmetry of / (•), the false 

alarm probability is given by: _ 

"' = (?)" 
n       I   n 

s   k 
n 

+ c\ t<n-l 

,     t=n (A-2) 

When  n  is small and  the desired  ag is very small,  the second  row of (A.2) must be 

chosen, and therefore the detection probability is also proportional to the randomization 

constant c which might be very small. Denoting Probfj {x^ >0} = p , it is given by 

F, = cp" = ao2"p" < ao2"  | SNR-,oo (A.3) 
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The critical values of the sample size such that for n <n, the detector becomes 

very poor {P^ <0.5, even for SNR -»oo) are found to be 12, 19 and 26 for 

ao = 10" , 10" , 10" , respectively; these numbers are typical of many practical systems. 

A similar situation is encountered with the Wilcoxon detector, as its minimal false alarm 

probability (without randomization) is also 2"" . 
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Appendix B 

An Approximation for the Distribution of the 

Envelope Detector 

In this appendix an approximation is derived for tlie distribution of the coherent 

n n 

envelope statistic: i?  = /" + Q",   / = (1/n ) X) ^i  ;   Q  = (V'^) S 2/». where x and y 
1 1 

are i.i.d. vectors which are also independent of each other. When the samples are Gaus- 

sian, R is one sided exponentially distributed. Thus, we are interested in an approxima- 

tion which exhibits this exponential limiting behavior. ' 

Formally, any univariate density / {x) can be expanded in a series of orthonormal 

functions {^^.{x)} as 

CO . 

f{x)=  E   C, ^,{x) (B.l) 

which is L 2 convergent when all moments of / exist. A classical expansion in terms of 

the Gaussian density and its derivatives (which are proportional to Hermite polynomials) 

is the type A Gram-Charlier series [36], or its reordered version, the Edgeworth's form 

which, when applied to the distribution of the samples mean, gives the best order in 

powers of n^^'". Conditions for convergence of the infinite Edgeworth series are rather 

technical and implicit (they require conditions on / which is usually unknown); more- 

over, they are of little value from the statistical viewpoint where the important question 

is whether a small number of terms can furnish a reasonable approximation. In particu- 

lar, while the Edgeworth expansion of the sample mean converges to the Gaussian den- 

sity with finite terms as n —»■ oo, when the expansion is carried out for finite n , adding 

more terms in the series above some optimal number usually results in a worse fit. See 

[36, Chap. 6] and [37, Chap. 16]. 

As pointed out in a footnote [36, Section 6.24], when an approximation for the dis- 
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tribution of a positive random variable is desired, it is plausible to use a family of func- 

tions which are supported only on [0, c»). In this way, the error from the tails of the 

Gaussian density and its derivatives at i < 0 would be eliminated. Since in our case 

the limiting one sided exponential distribution belongs to the Gamma family, the 

appropriate polynomials are those of Laguerre defined by [38] 

Lt{x) = llj^  ^{e-x^-n (B.2) 

The orthonormality relation is 

/ e - X" L,\x ) L;{X ) = ^^^ +,] + '' 5,.,. u (B.3) 

hence the expansion is 

f{x)-ECi e-'x'Li\x) (B.4) 
1=0 

where 

The first four polynomials are 

^0(2;) = 1 (B.6) 

Ll{x) = 1 + a -X (Bj) 

^2(^)-j[(a +l)(a  +2)-2:r(a + 2) + x^] (B.8) 

^3 (^) = y [(a +1) (a +2) (a +3) - 3x (a +2) (a +3) + Zx\a +3) - x^\ (B.9) 

Like the Edgeworth expansion, it is possible to eliminate the terms ?  = 1, 2 by a 

transformation.   Defining x =by, the following expressions are obtained from (B.5) and 

(B.6)-(B.9): 

^'= bv[l+i) (B-io) 



c. 

c, = 

197 

^^^[(«+2)(a+l)-2(a+2)i^+||; (B.12) 

(B.13) 

j.^^ [[a +3)(a +2)(a +l)-3(a +3)(a +2)|i +3(a +3)^ - ^] 

where /;*,■ = E^ [x').   Solving for C^ = C2 = 0, we obtain: 

Ml        =   ^ 

2//-.. .. 2\       1    A 
« = A^i /(/i2 - /ii') - 1 = a 

Hence, upon substituting back with y ^ f3x 

^^ 

(B.14) 

(B.15) 

(B.16) 

[a + 2)ii. - /3fis 0"e-'''x"-'Ls"-'{/3x) + T{a) '   r(a + 3)    L' 

The leading term is recognized  as the Gamma density which,  as a-*-l,  tends to the 

desired exponential density. ^ 

Integrating (B.16) to get the false alarm probability F, {x > t/j,^} = P^ {y > t a} 

is simplified by using the defining expression for the Laguerre polynomials (B.2). Some 

tedious algebra yields: 

F;,  =P,{x  > t Ml} =[l- I{a, t a)] + 

Cz' 
+ —T-K ^'l' t's)^      ("^ r [2ai (« + 2) - (at f - {a + 1) [a + 2)] +   ■ ■ ■   (B.17) 

where 

CJ   = 
c. a 
0_        r(a + 3) 

and 

at 

/(»,.<)£/     r,^ 

(a+l)(a+2)- 

e-W-^t 

Mf 
(B.18) 

(B.19) 

is the incomplete Gamma function. It is clear from (B.17) that the second term vanishes 

for t=0 as well as for t =00, thus fulfilling some of the properties of a proper distribu- 

tion (since the first term is a proper distribution).   However, it cannot be said whether or 
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not (B.16) can assume negative values, a common feature of all finite Gram-Charlier 

expansions. The following term in the expansion turns to be so complicated so it will 

not be given here. 

To get specific results for the coherent envelope statistics R   defined in the begin- 

ning of the appendix, we need to express the moments of R  in terms of those of the i.i.d. 

samples,  EiR"") = -1^ E [{J^x^f + {J^y,)Y .    Using the  moment generating func- 
n 1 I 

tion, tedious but straightforward manipulations yield 

1^1 = E{R) = — a^? (B.20) 

n^ n a-" ^        ' 

H, = E{R')=^[24 + 11^+1   {L~15K)\   ,   L A^ -15     (B.22) 

where a,^ = E{xi'^), rrij = E{x/) and K is the coefficient of kurtosis. When x^ are 

Gaussian, both K and L obviously vanish. Substituting these into (B.15) and (B.18) we 

obtain: 

a = {l + K/2n)-^ (B.23) 

Hence, the limiting behavior of the approximation with only the first four terms of 

(B.4) occurs when the number of samples n is much greater than the kurtosis 

{K/n -> 0). Then a -*■ 1 and the first term in (B.17) approaches e"' as required by the 

central limit theorem, though (unlike the Edgeworth expansion) the first term itself actu- 

ally includes all powers of K/n in a highly nonlinear fashion. When a < 1, a com- 

parison with tables of the incomplete Gamma function shows that for sufficiently large t 

(such that the nominal false alarm probability Pf^ = e"' is small), the outcome of Eq. 

(B.17) could be orders of magnitude higher than the Pf^ as expected. In the second 

term of (B.17), all the expressions tend   to a constant when a—>1 except  C3'    which 
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vanishes identically when a= 1.   For other values of a, expansion in K/n gives 

lim    C,'   =-^4^   +0{^) 
^^0 
n 

n     12 
(B.25) 

For the normal-normal mixture:   / (x,-) = (1 - e) N{0, 1) + eN{0, C^), 

K = 3e(l - e) C^-1 
1- e + eC' tC^ » 1  e 

L = 15 
eC^ » 1   e 

15_ 
2 

(B.26) 

(B.27) 

Therefore, with small amounts of large contamination and n   not very large, a can be 

much smaller than one and the contribution of (B.24) is also not negligible. 

Actual computation of (B.17), using Equations (B.20)-(B.24), (B.26), (B.27), is 

shown in figures 2.1-2.5 of Section 2.2 and compared to Monte-Carlo simulation results. 

For a roughly in the range [0.5,1], this approximation is seen to be quite good. It is still 

a reasonable prediction of the amount of increase in the false alarm probability down to 

a = 0.3. 
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APPENDIX C 

The Maximin Test for a Single Observation 

For a single observation of a r.v. R  wliich comes from simple mixture hypotheses 

Po and Pi as in Eq. (1.1), Huber's [2] maximin robust test takes the form 

d*{R) 

H, ,     1{R L' ,L" )> t 
H^ with probability c ,    1{R L' ,L") = t 

Ho ,    l[R L' ,L")<t 
(C.l) 

where the soft limited 1{R;L',L") is given by Eqs. (1.6-1.8). The constants 

0 < L'    < L "<oo are found by solving 

Pi{L  >L' }+L' Po{L  <L' } = {l-er' (C.2) 

Po{L  <L" } + {l/L " )P,{L  > L " } = (1 - e)-i '       (C.3) 

where L{R) = f ^{R )// ^(i? ) is the LR under the nominal situation, and is assumed to 

be continuous. Application of these equations to the distribution of the coherent 

envelope of a Rayleigh narrowband signal in narrowband Gaussian noise, Eqs. (3.3-3.4), 

results in Eqs. (3.6-3.7). 

Since l[R; L' , L" ) is a monotone increasing function of L {R ), which in turn is 

monotonic in R , Eq. (C.l) can be reformulated as a randomized test on R . The thres- 

hold and the randomization constant are functions of the least favorable p.d.f.'s. Three 

different cases are possible, according to t = L ' , L ' < t < L" and i = L " see 

Figure   1.    Define   R'     and   /? "     hy   L {R ' ) = L ' , L [R " ) = L " .    Define   also 

00 CO 

°'{^) = I fo{r)dr,P{x) = J f^{r)dr.   Then, 
X X 

CaseA t=L'   => e < {ao - a{R'))/{!-a{R ' )) (C.4) 

H 1 ,     R  > R 

^    ^       \   i/i with probability c   ,     R   <R' (^•^) 

where 0<c <1 is given, as a function of the desired Q-Q and of R ' which solves (C.2), by 
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ao-e-{l- e)a{R > ) 
c = (C.6) 

(l-6)(l-a(i?' )) 

The detection probability under the least-favorable q*x  \?, 

^(rf*,g*) = c  +(l-e)(l-c)/9(i?' ) = l-(l-ao)L' (C.7) 

/-ID T        .        T II ao-a{R' ) a.- a(R" ) 
Case R L  < t  < L"   => — ^^  < e < — !^ L      (C 8) 

l-a{R' )    -     ^    l-a{R" )        ^   ^^' 

(Hi        R  > Ri 

■    ^*(^)=(  Ho',    R <R, (C-9) 

where 

Here, 

ao = e + {l-e)a{Rt) (CIO) 

l3{d*,q*,) = {l-e)f3{R,) (C.ll) 

Ca^eC                 L''   = t => e > [a^ - a{R " ))/(! - a{R " ))          (C.12) 

(   Hi with probability c R   > R" 

''^''^=\   Ho                                 ;     R<R" ,    (C-13) 

where 

«o 
e + (1 -e) a(/?" 

(C.14) 

Here, 

Notice that in this case where large e necessitates randomized maximin test, the result- 

ing maximin lower bound on /?, Eq. (C.15) is very small, as it is proportional to the 

desired aQ. , 

The proof of Eqs. (C.4-C.15) follows from (C.1-C.3). For Case A, (C.l) is 

translated into (C.5) as a result of the above mentioned monotonicity properties. To 

satisfy the constraint on the probabiUty of false alarm, we must have 
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ao = P^{R  >R'} + cP^{R   < R'  } 

= P*{R'   <R<R"}+P^{R>R"} + cP^{R<R'} 

Utilizing the expression for the least favorable density gg , Eq.   (1.6), 

ao = {l-e)Po{R'   <R  <R" } + c{l~e)Po{R  <R' } + ^LlA p^{R  >R"} 

The last term is equal to 1 - (1 - €)Po{R   < R" }, by virtue of Eq. (C.3).   Collect- 

ing terms, we obtain 

ao(l-e)(l-a(/?' )){c - 1) + 1 

from which (C.6) follows. In order to satisfy c > 0, we get the appropriate e range, Eq. 

(C.4).   In a similar manner, from Eq. (1.2) for g^ , 

0{d',qt) = P',{R   >R'   } + cP',{R   <  R'   } 

= {l-€)Pi{R>R' } + {l-e) L'cPo{R   <R' } 

and the last term, by virtue of Eq. (C.2), is.equal to c [1 - (1 - e)P^{R > R' }]. Col- 

lecting terms, the first equality of Eq. (C.7) is obtained, and the second one is found by 

substitution of (C.6) and using (C.2) again. 

Cases B and C are proved in a similar manner. 

Figure 1 

A     L(R) 
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Appendix D 

Statistics of the SSQME Test with Unmatched Frequency 

We first generalize the asymptotic normality of M-estimators for a sequence of r.v.'s 

which are not identically distributed. 

Lemma 

Let /G^ of Section 4.1 and assume also that /  is bounded. Let {a:,} be a sequence of 

independent r.v.'s with   p.d.f.     / {— -) where /   is symmetric and absolutely 

continuous, and   lim nA^=a^<oo. Then Vn^A„ , where A„ =arg { V /(ar^-i^ )=0}    is 
n —►00 ■     , 

I =1 

asymptotically distributed as N[m ,V) where 

a y]miEi(l') .   . r      rlr 

and 

^ rr^   / i2\     A     r 12/     \ r  f    X   ■,   ax V   =   ^      ,     ^.('')^//V)/(—)— (D. 

n 
ii\]2 CTi    ai 

Proof The proof follows Huber's [1] with some modifications to account for the 

unequal means and variances, hence it will only be briefly sketched.   By monotonicity of 

lim Prob {A„^/^  < k}   =    lim Prob {EU^i " kn'^^-) <0} (D.3) 
n -♦00 n ->oo 

Define y„i=l{xi-kn~^'-]. Upon expanding in a Taylor series of powers of n"^/", and 

invoking the assumed symmetry properties of / and /, some terms vanish and we 

obtain: 

m„i^E{Y,i)   =     n-y\ami~k)Ei[l')   +   0{n-^) (D.4) 
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There is a slight complication since the y„,- are different for different values of n , and 

the usual formulations of normal convergence do not apply. However, this case is covered 

by the Lindeberg - Feller theorem [41], which asserts that a necessary condition for con- 

vergence to a standard normal distribution of s„ = f] iyni-rn^i)/<^n with a„-= f] '^ni, IS 
2=1 !=1 

that each summand contributes negligibly to s„   in the sense of Lindeberg's condition. 

Explicitly, 

lim max = 0 
'■'.   cr: 

(D.6) 

which is satisfied since /(•) is bounded, t;„- y^O and   a^ grows as n ; The sufficient condi- 

tion is proved in the same manner as m Huber[l,3].   Interchanging of   lim   and Prob {•} 
n —►CO 

is allowed since {A„} converges.   Subtracting   lim Y^m„/a^^Im-k)/V^/'^ from both 
n -►00 ' 

sides of the argument of the second expression in (D.3) yields 

lim Prob {A„^/^ <k}    =    $(i-l£i 
n-*oo ^  1/1/2 (D.7) 

We now turn to prove Proposition 5.3. Let 

Qi 
= 

Ci         Si 

-Si        Ci 
^i 

Ui 
(D.8) 

where c,-=cos^j, s,-=sin6'j, ei=2-Kik/n. The input observations, with 

of Doppler frequency /^ , are given by 

a sinusoid signal 

"c, + -4= cos{<i>+<i>i)   ,   Vi = «s  + -^ sin{<t>+4>i) (D.9) 

where <?!>,■ =27r?7^//, =27rz A/n . ( A measures the frequency deviation from the nearest 

filter, normalized by the filter bandwidth JJn). Let / and Q be the M - estimators of 

the     {/,■}     and      {Qi},     respectively,     where     the     /(•)     function     is     assumed 
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monotonic , hounded and skew - symmetric .   As a consequence of the symmetry of /(•) 

and the transformation (D.8), the following expectations under HQ [a =0) satisfy: 

E,[l[I,)) = E,[l{Q,)) = E,[l"[I,)) = E,[V\Q,)) = 0 

E^{1') ^ Eo{l'{Ii)) = Eoil'iQi)) ^ 0    (identical V 0 

^o(/') t Ell\k)) = EH\Q^)) ^ 0  (identical V 0 

Eoil'jl'g) ^Eoil'{Ii)l'{Qi))y^O {[dentica^Wii] 

Notice that /,■ and Q,- are in general not independent under HQ ( unless Xi and Yi are 

Gaussian), but they are uncorrelated, and their joint density is circularly symmetric - 

/o(A-> Qi)=9{h +Qi )■ Since the following derivation depends only on the above pro- 

perties of the various expectations, which are valid with any bivariate circularly sym- 

metric p.d.f., the original assumption that N^^ and N^^ are i.i.d. can be replaced by 

assuming they are circularly symmetric. In particular, this is true when the narrow - 

band noise process is realized in the "natural" way as iV^ =A'^,-cos7,- , yV^ =A',-sin7,-, 

where 7,- is [/[0, 27r] and is independent of A^,-, which can be arbitrary positive r.v. 

Applying the lemma, / and Q are marginally Gaussian. Since VarQ[I^)=Varf^Q^), 

(D.2) yields --.*- •■ 

lim Var^{^/^I) =   lim Vary{^/VQ) = EQ{1')/E^-[l') ^ \\ (D.IO) 
n —»oo n —♦00 

From (D.l), 

(D.ll) 

lim Ey{\n^I) =   lim ±'£cos{<P+<f>i) ^T   ,    lim ^^(v^g) =   lim ±y]smU+4>:) ^ Q 
n-*co n-►CO n n-►co n-*co n 

We want to show that the joint distribution of / and Q , averaged with respect to 

<^, is in the form of Eq.(4.15). For that, it is needed to show that / and Q are asymptot- 

ically independent. Invoking the monotonicity assumption, 

(D.12) 
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V n Vn 
where 

^"i = I (A- —^) = I (Nc,' +^) , ft = a cos(,?i+^,. -Oi )-c (D,13) 

^"' ^ ^^^'"TT^ ^ '^^'•' "^TT^ ' ^^' = «sin(0+^i-0,.)-(i (D.14) 

and the primed  r.v.'s are the result of the transformation (D.8) applied to the input 

noise samples. 

We have to show that the r.v.  IK„ =«[/„+/37„ = ^ 1K„,.  is asymptotically Gaus- 
«=i 

sian  for  any  a  and /?.  Let  Z,i={W^i-E {W,i))/{j] Var {W,,)fl-  and  consider only 
1=1 

bounded /(•) functions, which are sufficient for our study. (Actually, monotonicity is 

sufficient for the following, but the proof is longer). Obviously, | Z„,- | <M„i <oo and 

J™o"^f^ ^"^ ""° ^^® *^° *^^ ^^°^^ normalization. Thus, Lindeberg's condition is satisfied 

(see [64, pp. 201]), C/„ and F„ (hence also / and g ) are asymptotically jointly Gaussian, 

and it suffices to show they are asymptotically uncorrelated for independence (Note that 

thus far no assumption on the joint distribution was necessary). Expanding in a Taylor 

series, noting that some of the various expectations under HQ vanish as above, we find 

E,{U^,) = ^E,[l') + 0{^)  ,   E,{V^,) = -^E,{l') + 0{^)   (D.15) 

E,{U,,V„,) = li^E,{l',VQ) + 0{-L-) ■      (D.16) 

Var,{U„)=^Var,[V,) = E,{r-)+0{^ 
n 

Hence, 

E,{U^ F„) - E,{U^)EiV^) = 1 f] [E,[U„, V„,)- E,{U^,)E,[V^,)\ 

E Pi 1i 1 [Eoil'll'q hEoV)] + O (-L,) = O (1) 
=1 } n-^i' n 
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Therefore, the asymptotic joint distribution of U„  and V„  is that of a pair of indepen- 

dent Gaussian variables. Returning to (D.12) and using (D.IO - D.ll), 

lim P {\/^/ < c , vVg  < d} =  Yim P{U„  < 0, V„  < 0} 
n—co n—CO 

=   lirn^P {v^/ < c }P {y^Q   < d} = ^^^)^A^ 

Transforming  Vn'l^I, S/TTQ-^Q,   the  argument  of  the  exponent  of  the  joint 

Gaussian density is thus 

"^   { /2+ Q^+ P+ g2_ 2(7/ + QQ)} 
2V, 

The middle pair does not depend on 

P+Q' 
=   lim   [-Scos(^+^J]'+[-Esm(0+<^,)l'=   1 

n —>co     n 
urn 

n —'00 

l_y ^ j {'t>+<t>, 

n 

•••   =   lim    a^cj2+[ls^, 
n —»oo      n 

lim 
sin(7rA) 

TTA 

? 
^ G'fAl 

where here c,- ^cos((;;!>;•) and s,- ^sin(</>,-), by straightforward calculation. Also, 

5. 
II + QQ =    lim aVC^+5^cos(<^-tan-i(—)) 

n —>oo C 

where C ^/(l/n )Sc.-+Q (l/n )X;5,-  and 5 J-/(1/n l^s,-+g (1/n )^c,-  , from which 

lim C^+5^ =   (/^+Q^)G(A)   follows   as   can   be   verified   by   substituting   for   the 
n -►oo ° 

definitions. We finally have for the asymptotic conditional joint density 

(D.17) 

/^+g2+„^2^(A)-2y^A\/(/-+g-)G(A)cos(<^-tan-i(—) 
 ^ ^  O 

-2F, 
/(/,§ |A,# 

27rF 
-exp 

Averaging this with respect to (j) on [0,27r] gives the same expression as in section 4.2, 

since 5 and C do not depend on 0, and where the eff'ective SNR is replaced by 

nA'^G{^)/2Vi. Hence, the detection probabilities for the various SSQME tests of Sec- 

tion 5.2 are identical with the case 7^=0 if the eff'ective SNR is attenuated by G(A). 
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In the FFT processor, the sidelobes can be reduced, and the response can be 

flattened over the mainlobes of the individual filters ( | nf Jf ^ \ <0.5), at a price of 

reduced SNR at /j= 0, by appropriate weighting (e.g., Hamming's): 

{ x,y}->{w^x,w^y}, which changes G {A)^ \ 1 f] «;i exp(j 27r^^ A/n ) | \ The same 
" /fe =1 

can be done with the SSQME test.   The derivation of the test statistic is similar to that 

above, but now we have to account for the unequal variances as a consequence of the 

weighting. The        frequency        response       will        be       given        by        G (A)= 

I -E«'*'exp(j27r^A/n) I \ where w^'^ Ek{l')jJ]Ek[l').   The design of the weighting 

coefficients is more complicated than in the linear FFT case; first {w^' } are chosen for 

the desired response, and then jl'{wk x )f [x )dx = w^'   has to be solved for {w^ }. 
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Appendix E 

The Efficacy of Quadrature Tests 
Pitman's efficacy is usually employed as an asymptotic performance measure of test 

statistics, whose asymptotic distribution is Gaussian, c.f. [21], [25]. However, the asymp- 

totic distribution of the quadrature type tests, which are studied in this thesis for detec- 

tion of coherent fading narrowband signals, is non-Gaussian. Hence, an appropriate 

definition of efficacy is needed. 

Let Q„  == r„ (x) + T„'(y), where the statistics T„{-) are asymptotically Gaussian, 

under both the hypothesis and a location shift alternative:   / ^(a;,-) = / 0(2:,- -a), with 

i?or„(-) = 0,     V,T,{-) = a'- (E.l) 

E,T,[-) = V^g{a),     V,T,{-) = a'-+Oia) (E.2) 

Assume that g [0] = 0, 0 <   \ g '(0) |   < 00.   For narrowband slow fading signals, 

n 

f (x, y) =   n   / Q{xi - aA cos9, iji ~ aA sin^) (E.3) 
i =1 

where ^ is a positive r.v. with arbitrary distribution, and d is uniform r.v. on [0,27r]. 

Notice that, with proper normalization, A is a dimensionless r.v., a' represents the 

SNR, and the influence of the test statistic r„ (•) is gauged by g (■) and a.   Define 

m^  t EiT„{x) = ^g{aA COS0), m^  ^ EyT„{y) = s/^g{aAsme) (E.4) 

and assume also that r„ (x) and r„ (y) are jointly Gaussian and 

lim    ^i{(r„(x)-mj(r,(y)-mj} = 0(a) 
n  -» CO 

i.e., r„(x) and r„ (y) are asymptotically uncorrelated when a  —»■ 0. 

Definition The efficacy of the test Q„  is 

dEiT„/da \ ^=0 
(E.5) 

which is recognized as the common definition of the efficacy of T^ . 

Justification We have to show that CQ^  parametrizes the asymptotic power function 
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For that, the conditional (on A and 8) asymptotic distribution of Q„ is needed. To 

avoid singular detection, consider a sequence of alternatives a„=5n"^/2 By virtue of 

our assumptions on the asymptotic distributions of T„ (x) and T„ (y), their asymptotic 

distribution is bivariate Gaussian with zero correlation. Therefore, the asymptotic con- 

ditional p.d.f. is non-central Chi-squared with two degrees of freedom and non-centrality 

parameter X = m^^ + rUy^, c.f. [51, pp. 113-118], 

n  ^ CO     2o- I 2<J- j 

\/Qn nh{a^) 
(E.6) 

where 

/j (a ) = (/'(aA cos^) + (/^(aA sin^?) (E.7) 

Under     HQ,     Eq.     (E.6)     reduces     to     a    one-sided     exponential,     thus     a= 

PolQn   > 0=exp(-i/2(T-).   Under//i, 

oo 

^-^ J'^^^^AEePriQn  >-'^<^'\osa} = E^Ee    j     f i ^ {Q„ \ A ,d)dQ,    (E.8) 
«   —» oo 

-iff logo: 

where interchanging of the limit and integrations is justified by the dominant conver- 

gence theorem. Expanding Eq.(E.7) in a Taylor series and utilizing 

g{0)=0,   I ^'(0) I   < oo, the first two terms vanish and we obtain 

lim    nh{a„) = [5Ag'{0)]^+O{l/^) (E.9) 

which is not a function of d, to order n'^/^. Thus, with the definition of Marcum's Q- 

function, the limiting power is 

/3 = E^Q[6A \g '(0) | /a,   v^27^] (E.IO) 

For a given distribution of A , and a given input SNR [6), the detectability is thus 

governed by the parameter   | g '(0) | /a, and the definition is justified.   (Recall, however, 

that the random phase and amplitude incur detectability loss in terms of the required 

input SNR, c.f. [13], [51].)  . 
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Appendix F 

Efficacy Optimal Tests for "Single Sweep" Ranking 

Let {XJO},"=I be the observables which contain the information on the alternative 

K, and {xj^ },"^i, A; = l,...,M be noise reference observations. Under K, a location 

shift model is assumed 

n M 

/(xo, xi, ..., x,v/)=   n   J[xiQ-A)   n   f [xit,] (F.l) 
I =1 k =1 ,'   _. 

In radar terminology, during each "sweep" i (the repetition interval of the 

transmitted pulse train), M reference observations are taken in a region around the pos- 

sible signal location. 

A "single sweep" rank statistic is defined as 

^n   =   E   «M+l(^A/ + l,,-) (F.2) 
t=l 

where i^^+i,.-   is the rank of ar,o in {xik)kLo-   In the following, the M+1 subscript will 

be dropped for convenience. 

As T„ is the sum of i.i.d. random variables, it is asymptotically Gaussian with 

E{T^}^nE{a[R)),Var{T^) = nVar{a[R)} (F.3) 

The discrete probability distributions of the ranks is given by 

P,{1)   A p^{R^  = I e [1,...,M+1] \K} = P, {x,(,_i) < x,o < :r,(,)} (F.4) 
oo 

and 

Po(0 ^Pr{Ri =nH} = 1/(M + 1) (F.5) 
Thus, 

M + l ^ M + 1 
E{a{R)\K}=   2   a{l)P,{l),   E,{a) = -±-   ^   a{l) (F.6) 

; = l M+l    i^-^ 
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and 

M+l 

where 

dE{a{R)\K}   \ ,       ^      ^ ^   , 
 ^   \,  =—-—   y,   a  l)a  I  f] dA \A=Q      M+1  i^^     ^ '   ^ '-^ ' (F.7) 

a(/,/) ^-(M+l)(^^g Jf'{x)F'-\x)[l-F{x)f^'-'dx (F.8) 

Also, 

M+l ^/_,_j 

Var{a{R)\H}=   ^/'olOI^ (0-^o(« )]'= -ry^ E [« (0-^o(« )]^       (F.9) 

and it can be easily verified that 

Jim^Var{a{R)\K}= Var{a{R)\H} 

Pitman's conditions [25] are satisfied, and the efficacy is given by 

dE I 1 -^ 
{a{R)\K}/dA P        M+l 
  I -4=nJ  

Var{a{R)\H} 
1=1 

M + l 

1=1 

^(F.IO) 

M+l 

where we have used    ^   «(/,/) = 0, as can be shown from its definition, Eq. (F.8). 

Eq. (F.IO) can be used to measure the efficacy of an arbitrary score function a(-) at a 

given noise p.d.f. By the Cauchy-Schwarz inequality, 6 is maximized by 

a(/)-^o(a)= a(/,/)=> a{l) = a{l,f), and 

M + l 
max 6 = 
{"(')} 

-rr— E  AlJ M+l       ;t^l 
(F.ll) 

when the signal is time varying, A -* SfA in (F.l). Due to the sweep-tosweep indepen- 

dence of the /?,-, the influence of the s,- on 6 appears as a multiplying factor. Following 

the same steps, it is readily shown that the optimal test is 

^n   —   E   '^i '^M + l(-^M + l,j) 
«=1 

(F.12) 
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and Eq. (F.ll) should be multiplied by  j]  s,-^. 
»=i 

For   large   M,   the   optimal  scores  can   be   replaced   by   the   approximation   [49] 

"^'"''^""^^AfW'^^'      ^^^'^      <i>{^J) = -f'{F-\u))/f{F-\u)),      and      then 

max e -^ /(/ ).   Hence, when M is large, the "single sweep" ranking structure does not 

entail any losses. 

It is easy to show that  r„   of Eq. (F.2) with the optimal scores a[lj ) is also 

n 
locally optimal for finite rz, since   T^^^ =  J]  P^[Ri)/P^[Ri). 

j =1 

The   a{l,f)   are  also  the  optimal  scores  of the  corresponding  quadrature  test 

n n 

[S «(^/)]^ + [E «(^i'')]^ since its efficacy is identical with (F.IO), see Appendix E. 
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Appendix G 

The ARE of two-sample and single-sweep rank tests 

with Wilcoxon scores 

From Eq.(F.lO) of App.F, and from Eq.(6.3.12) 

oo 

ARE2S ss = (1—-—y^^ '=1       (c ^^ 

0 ' —1 

where N=M+1, a{i,f ) is given by Eq.(F.8), and the indices 2S and SS stand for two- 

sample and single-sweep test, respectively. "■ 

With Wilcoxon scores, /(u)=u-l/2, and a[i)=i/{N+l)-l/2. The ratio of 

integrals in (G.l) is easily computed to be I2[jf'-{x)dx\~. Also, X]a-(0= 

(iV-l)Ar/(12(iV+l)). For the  remaining term, 

=1 

/V ^^      /N-l\ 

Writing this as the sum of two terms by breaking the [l+k], the term corresponding to 

the 1 vanishes after changing the order of summation and integration and utilizing the 

binomial expansion, 

^-I'iV-K 
s( ;>*[i-F]^-i-^ = i 

00 

since  // '{x)dx=0.   For the term corresponding to k, the ^-=0 term in the summa- 
-00 

tion vanishes, thus another change of variables yields 

. A =-mi"s\"r)//.,.,^'«(.)|i-^(.r-,. 
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Interchanging the order of summation and integration and using the binomial expansion 

again, and integrating by parts, yields 

Combining all the above derivations, (G.l) reduces to 

ARE OS ss = (1+—)(1 ^^) fG "^l 

which is independent of / (•). 



- 216 - 

Appendix H 

EiRcacy and Integration Gain for Non-coherent Stochastic Signals 

Let the available observations under the alternative be the in-phase and quadrature 

components of a narrowband process {a:,-, y,- },"_i. The densities are given by 

/ i(x,y;a ) = /•■•//(xi-as, 1,2/i-as,i, • • • ,Xn-as,„ ,y„-as,^ydF,{s,^,s,^,...,s,„ ,s,„) 

and / o(x,y) = / i(x,y;0). Here / (•) is the joint density of the narrowband noise, 

Fg(-) is the joint distribution of the additive stochastic signal, and the parameter a is 

related to the SNR. The following assumptions are made: 1) all first and second deriva- 

tives of / (•) exist; df /dxkdyi is denoted f,^^^, and so on. 2) {s, , s, } is a wide sense 

stationary process, with Es,i = Es,i = 0. The absence of a common mean can actually 

be viewed as a definition of a non-coherent stochastic signal. In particular, it is true 

when s^i = A,-cos^,-, s.^ = A,-sin^,-, and the phases 9^ are i.i.d. 

Consider a memoryless test statistic 

«=1 

Under rather mild regularity conditions, T is asymptotically normal, and the asymptotic 

power is 

(E T — E T      V ^/^T ^ 

for some 5>0, where 

n->co V^/-T 
a ^ 0 " 

an*— c 

Expanding the numerator in a Taylor series 

da     ^   2       da'- 

but 
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dE^T 

da 
-E{ 

!=1 
S 9 {xj , Vj }==0 

where the expectation is taken over all the random variables. Thus, unlike the coherent 

signal cases, the first term in d is proportional to a" rather than to a, under the most 

general assumptions. This also implies that a non-trivial definition of a locally optimal 

detector for non-coherent signals, is the one that maximizes the second derivative of the 

power function at zero. 

To get a simple expression for the efficacy, we assume now that the noise samples 

are i.i.d., and that the signal is uncorrelated and its spectrum is symmetric around the 

carrier frequency.   These, together with the w.s.s.   assumption, amount to (c.f. [14], [.51]) 

Es,- = EsJ = 1,   Es,:s 
Cl "CJ Es, ^S] 0,   Es,i s,j = 0 

Thus, it is readily found that 

d^E^T 

da^ a=0 

VQT = nVQQ , EQT = nEoQ 

n I I 9{^,y)[fxx{x,y) + Iyy[x ,xj)\dxdy A nl{g ,f ) 

Hence, 

^ ^  VrTa'^   I{g J ) 

By way of comparison, for coherent signals d is proportional to a , and is larger for weak 

signals. If the narrowband noise is normalized to unity variance, a-/2 = SNR . The 

integration gain for two detectors with the same g{-), is defined as the limit of the ratio 

of the input SNRs, when both operate at the same level. Thus, 

IG,o ^ lim 
r? 1,^2 —* 00 

aj = «2 = a 
^j = ^2 ^ a 

SNRo 

SNR I 

By way of comparison,  the  integration  gain  of detectors for coherent signals is 

("i/wo), therefore coherent signals lead to better detection performance. 
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Appendix I 

The efficacy and asymptotic distribution of rank Doppler tests 

I.l) One - and two - sample rank Doppler tests 

With   the   definitions  of  Chap.   6.6.1,   the  means  of  the  observations   after  the 

"butterfly" transformations, Eq.(6.6.2), are 

d/^EiIi=aAsiCos6i[l-U{i-n-l)]    ,    5,-  ^ 27rz A/n+0 (I.l) 

di^^E^Qi^aAsiSinSi [l-U{i-n-l)] (1.2) 

^Throughout  this  appendix,   all  expectations  and  variances  under  H^   are  conditional 

expectations, given A and 9. To compute the efi'icacy, the asymptotic means and vari- 

ances of / and Q , defined in (6.6.4), are needed. They can be found from Theorem 6.2.9, 

provided the conditions (6.2.23) and (6.2.24) are satisfied.   For the / channel, from (I.l), 

^n =  Y:{d/~djf == na'-A\C^-~-£l-) < na'-A'C^ 
,■=1 M+l' - 

where C ^l/n ) f] Q , C^J(l/n ) f] c,', c,- ^s^ cos^,-. Thus, 

n   
2 9   y    <}7^ 

OO na^A'C^< a2^2^5,2 = na2^2jJ^ 

Hence, for na -> constant and S^<oo,   lim A„ <oo and (6.2.23) is satisfied. The condi- 
n -►OO 

tion (6.2.24) can be written with the above definitions as 

max{(c,-C/(M+l))2 , {C/{M+l)f} ^    ' 

n 

For an absolutely summable signal sequence, (1/n ) X]  I Sj | <co, all the expressions in 

(1.3)  are finite,  thus   lim 5„ =oo as required.   The conditions for the  Q   channel are 
fj —►OO 

satisfied in a similar manner. 

Invoking Th. 6.2.9, we have 

m ^ E,I = -~aAY^ {si-^)s,cos8iG\J, f ) (1.4) 
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liQ  ^E,Q = ^aA^{s,-j^)s,sm5iG'{J, f ) (I.5) 

where G'{J, f ) is the integral in (6.2.27). From (6.2.28) and (6.3.14), 

Vol = VoQ = 1— 
-9    . 1 

[-   M+1 j-f"^'^")'^" (^-^^ 

As in App. D, the derivation following Eq.(D.7), 0 cancels when summing iif+i^L^. Hence, 

the efficacy 

Cr, =  1™  j^Y~^  1.7 

is found when substituting (6.6.5) into (6.3.11) 

1.2) Single - sweep rank Doppler test ' -i     ■' 

Tn{k) of Eq. (6.6.11) can be written as T„{k)=r^+Q'^, where here 

^= ^ E A- = 4- E («i Ci +yi Si),Q=-^j:Qi=^f] (-«, 5,. +1^,- Ci )(1.8) 

{u,-, u,- } are the scored single - sweep ranks defined in (6.6.10), and here 

Cj  ^ cosOj-  , Sj-  ^ sina,-  , o;,  ^ 2nik /n ■• ...      (1.9) 

From  the original assumptions, {U^} and  {F;} are sequences of independent r.v., and 

Ui   is   independent   of   Vj.    Though   {/,■}   and   {g,}   are   not   identically   distributed, 

Liapounoff's version of the central limit theorem is valid for /  and  Q , since the third 

centered absolute moments of /j  and Q^ are bounded, as they are discrete and bounded 

r.v.   Paralleling App. D, to prove (6.6.12) we have to show the following: 

E,\I)          E,\Q) 
^1 ^™   "FT T7T + "FT TTTT   ~ '^^   =  sm(7rA)/7rA - 

,:_     ^.(/g)-i?.(/)^.(g) „ 
^i-'f^o   sJVar^[I)Var^[Q) 

Here,     lim     is a shortened notation for the limit (n—t-oo, a —»-0, na"<oo), ~ denotes 
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proportional to, and 8{I, Q) is some function R'^-^R^. 

Throughout,   we  assume  the  score  function   aM^-^{l)  is skew -  symmetric,   th 

Eo{Ui]=Eo{Vi)=Eo{I)=EQ{Q)=0.   The  observations  model  is  of  Eq.(6.3.1),   wh 

d^l3i=^2m{k+A)/n+e, see (6.6.1). 

a) Expanding in a Taylor series for ^f (a )=£'j(/) yields 

Ei\l) = 9\0)+2ag{0)g{0)+a''{g-{0)+g{0yg{0))+O{a') 

us 

ere 

EAn = a^\   '^^^') 
da 0=0 

+ O(a^) 

but, 

where 

(I.IO) 

1        "        ^ + 1 1        n       M+1 

^'^^^^V^^''  ^ aM+i(0/'?i(0+ ^S«.  S «A/+i(/)/'f,(/) (I.ll) 

Pfi(/) = Fl{i2f,v,+l).=/}=(^J//(x-aylcos/?,)F'-i(x)[l-F(z)]'^^+i-'rf:r (1.12) 

^i'i(0 = ^i{^fM+i).- = 0 = (,^J//(^-Msin/5,-)F'-V)[l-F(x)f+i-'rf:r  (1.13) 

Thus, 

da 
Aa{l,f)cos/3i dP\i{l) 

a=0 M   +1 (fa a=0 

Aa(/,/ )sin/9,- 

M + 1 
(1.14) 

where a (/, / ) is given by Eq.(F.8) of App. F and is assumed Bnite (sufficient condition 

is /   to be strongly unimodal). Differentiating (I.ll) and substituting (1.14) yields 

dE^I) 

da 0=0 
^^Ecos(ft-„,).C(/)A-j^S«M«( ')"('-/)(1.15) 

In a similar manner, 

=  ^^^ E sm(/?i -a,-) 
dEi{Q) 

Combining (1.10) with (1.15 - 1.16) and (3i-ai=8i of (I.l), 

E,\l)+E^\Q) = na''A^G\f 1    " 
— Y\ exp(j 2-1:1 A/n 
".=1 

(1.16) 

+ 0[na^)        (1.17) 

Notice  that  6 has  canceled.  Due  to  the  i.i.d.  assumption  and  from  the mean  value 
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theorem, 

j=i 1=1 "da 

da 

(1.18) 
a'  <a 

< Faro(/) +  « max{ } 
a'   <a 

Hence, a sufficient condition for lim Far i(/) == Varo{I), is lim dVar^^IA/da   <oo, \ii. 

Since 

and 

Var {li )= Ci 2 Far (f/,- j+s,- ^ Far (F,- )= Var (f/,- )= Far (F; )= Far (Q^ 

M+l A/ + 1A/ + 1 

^«'-i(^i)= E«V)^H(0- E E«(0«(^)/'ii(O^L(^) (1.19) 
;=i ; = iA=i 

with  a similar expression for  Var^^^Vi),  it is seen from (1.14)  that the derivatives of 

Fari(/,-) and Var y{Qi) are proportional to a{l,f ), hence bounded, thus 

M+l 1 JW -I-1 

lim  Fari(/) = lim Far^(g) = E,\V,) = ^o'(^.) = -^ E «M%: (0   (1-20) 

Combining (1.17) and (1.20) 

EiV) E,\Q)   _    naU^G^(/)G(A) 
H,-^H^Var^{I) Var^{Q EoW, 

(1.21) 

b) From (1.15 - 1.16), the first term in the expansion is 

IE,{I)+QE,{Q) " n 
  = /E cos5,. +g 5] sm5,- = 

aAG{f)/Vn ,-=1 i_i 

= cosfi'f/X; COS7,- +Q "£ sin7i 1 + sin0[-/X] sin7,- +§ E cos^,- ] = 
1=1 1=1 i=l • =1 

= VC^+S\os{e - tan-i-|-) 

where C is the term multiplying cos5, S is the term multiplying sin(9, and 7; =27rt A/TZ 

It is easy to show 

C2+52=(/2+g2) 
Eexpli^/i) 

i = l 
(/^+g-)n'-^G(A) 

Thus, 
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rrrr 17 TFT + "FT 77TT =  4-^ ^-^cos(6' - tan"^—) (1.22) 

c) We neeed to show that asymptotically / and Q  are uncorrelated.   Starting from (1.8) 

and invoking the appropriate independence assumptions, it can be shown 

EllQ)-ElI)ElQ) = ^Y.^,c^[Eiy,V^)-E^{y^)E^[V^)) (1.23) 

-lE^,.,.(^i(C/,[/,.)-^i(t^.-)^i(C/;)) = -E«iC,(Fari(r,)-rari([7,)) 
!,; 8=1 

Expanding, 

iE».c,(F„„(v.)-v<...(^.)) + iS.-,^^^»<''''-''"°''''» 
!=1 t=l da 0<a'    <a 

< a  max c/(Faro(K..)-Faro(C/,-)) 
(/a 0<a'   <s 

= 0{a 

Thus, as the variances are 0(1), 

lim 
EllQ)-E,{l)E^[q) 

Hx-^Ho    ^/Var^{l)Vary[Q 
= 0 

Notice that cancellation of the zeroth order of the covariance is due to the rotation 

transformation, which results in (1.23). In fact, it can be shown that the derivative of the 

JW + 1 

difference is proportional to   YJ «A/+I(0«(^ / )• Thus, with the additional assumption 
;=i 

of symmetric /   this term also vanishes, and the correlation coefficient is even O (a^) 
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Appendix J 

Monotonicity of the error probability in digital noncoherent 

communication with respect to the SNR ^ 

In Chap. 8, it was shown that the generahzed SNR P {I, / ) possess a minimax pro- 

perty, in the particular class of AWNGN processes and in the class of decision rules 

based on either limiter-correlators or on generalized M-estimators. To show a minimax 

property on the error probability, it suffices to show that the error probability of the 

optimal M-ary decision rules for the AWGN channel is a monotonic function of the 

SNR. While this seems obvious and is evident from all the graphic exhibits in the litera- 

ture, we have not find any general proof for arbitrary signaling schemes and noncoherent 

reception. In the following, we demonstrate it for the important case of orthogonal sig- 

nals.   We denote by X=€/NQ the SNR. 

The probability of correct decision is given by, cf. [65], 

i =1 

Differentiating, we have to show the following for all X>0 and M>2 

/(-)= Ewra—^^^/'' >o (J.2) 

Expanding in a Taylor series at X=0, it suffices to show that the coeff'icients a^.   are 

positive for all k >0, where 

d   f [X] 
o-k =  —^,—^ 

dX' = .i](-irCO^ "(j-3) 
M 

X=0        ,-=1 "I' 

Define a generating function Pk[t) to be given by the same expression for a^., but 

the summands are multiplied by i'; thus P^ (0)=0 and F^. (l)=a^. We will prove that 

Pjcit) is positive for all t >0, by mathematical induction on k . a) Assume Pk-iii) is 

The initial part of the proof was suggested by Avner Dor. 
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positive, than it is easy to see that •■ 

0       2/ ^     ^ 

and    is    positive    by    the    assumption,    b)   To   show    that    Po(0    is    positive,    let 

Po{t)=9{t)-h{t), where 

9{t)=Y.{-ir{y'  ==[l-tr-l=^M^[l-yf'-Uy (J.5) 
»=i 0 

(the middle equality follows from the binomial expansion), and ' 

(J.6) 
M 

E 

It ie easy to see that th{t) = {\-t )^- 1, thus, as h (0)=0, -; 

h{t) = ]^hyl—Ldy        , (J.7) 
,• 0 2/ 

Combining with (J.5), 

Po{t) = 9[t)-h{t)=.]'-^'-yr-'i^-iM+l)y) 
0 y 

It can be seen that the numerator of the integrand is positive for 0<y <t <\, thus 

Po(0 is clearly positive and the proof is completed. 
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